Solving x^5=1

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ธ.ค. 2024

ความคิดเห็น •

  • @blackpenredpen
    @blackpenredpen  2 หลายเดือนก่อน +66

    Try my "extreme quintic equation" next: x^5-5x+3=0
    th-cam.com/video/GoGsVLnf8Rk/w-d-xo.htmlsi=WumfxJqZYwNfBWe_

    • @the_anonymous..
      @the_anonymous.. 2 หลายเดือนก่อน +1

      Use demoiver's theorem 😊

    • @anuragguptamr.i.i.t.2329
      @anuragguptamr.i.i.t.2329 2 หลายเดือนก่อน +1

      Co-efficient (ab+2) should be with X^2.

    • @ibperson7765
      @ibperson7765 2 หลายเดือนก่อน +1

      Doesn’t ANY number above one increased when ^5? And ANY number under one decrease?

    • @Jordan-gt6gd
      @Jordan-gt6gd 2 หลายเดือนก่อน +1

      Hi, would you like doing number theory problems and proofs of its theorems?

    • @anuragguptamr.i.i.t.2329
      @anuragguptamr.i.i.t.2329 2 หลายเดือนก่อน +1

      @@Jordan-gt6gd yes

  • @melvinwarmpf1264
    @melvinwarmpf1264 2 หลายเดือนก่อน +284

    2:35
    His face when he double thinks about what he said is gold.

    • @mbapum6363
      @mbapum6363 2 หลายเดือนก่อน +21

      “Tf did I just say”

    • @vijaykrishnan7797
      @vijaykrishnan7797 หลายเดือนก่อน

      "Never mind it's right "​@@mbapum6363

  • @YarinGD
    @YarinGD 2 หลายเดือนก่อน +861

    Everyone says that x⁵ = 0 is easier than this. But i think that x⁵ = x⁵ is much easier

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 2 หลายเดือนก่อน +265

      How about x⁵=x⁵+1? Instead of everything, it's just nothing. Just as simple.

    • @raffayirfan
      @raffayirfan 2 หลายเดือนก่อน +17

      ​That's a violation.😢

    • @MrKoteha
      @MrKoteha 2 หลายเดือนก่อน +13

      It's not a quintic though

    • @SimsHacks
      @SimsHacks 2 หลายเดือนก่อน +18

      it's not quintic.
      Quintic is ax⁵+bx⁴+cx³+dx²+ex+f=0 for non zero a.

    • @blackpenredpen
      @blackpenredpen  2 หลายเดือนก่อน +67

      @@YarinGD you win!

  • @rubyswolf9767
    @rubyswolf9767 หลายเดือนก่อน +8

    I just did one of my end of year exams for year 12 and this video is the reason I was able to correctly answer probably the hardest question on the whole exam! Thank you so much for your videos, please keep making them. The question required finding the root of a cubic and I always forget how to do polynomial long division but I found 1 was a root by just trying it and then solved the cubic by factoring to (x-1)(a^x+bx+c) then expanding again and solving for a,b and c just like you did in this video

  • @andracoske
    @andracoske หลายเดือนก่อน +79

    At 1:03 he said synthetic division so i left the video and spent 3h researching synthetic divisipn and everything else i needed to understand it, and here i am again. Coincidentally now it's 4 am and i have school at 7:45 and im probably gonna kms but idk yet.

    • @M7m7at
      @M7m7at หลายเดือนก่อน +15

      Curiosity killed the human

    • @BananaRamaa
      @BananaRamaa หลายเดือนก่อน +5

      I can’t believe im seeing this now cuz synthetic division is literally the most recent thing i learned

    • @yoylecake313
      @yoylecake313 หลายเดือนก่อน

      @@M7m7at But satisfaction brought it back

  • @vishalmishra3046
    @vishalmishra3046 2 หลายเดือนก่อน +42

    Simpler Solution - Use n'th root of unity
    x^5 = 1 = e^(i 360° n) so, x = e^(i n 360° / 5) = e ^ (i n 72°) for n = 0, 1,2, 3,4 leading to 1 (the only real root) and 2 complex conjugate roots with angles ±72° and ±144°
    So, *the 5 roots are* 1, cos 72° ± i sin 72° and cos 144° ± i sin 144°
    (Use cos ±72° = sin 18° = (√5-1)/4) and (cos ±144° = -cos 36° = -(√5+1)/4) and similarly the sine counter-parts to express the solution without any un-computed trigonometric functions)

    • @henkhu100
      @henkhu100 หลายเดือนก่อน +6

      Also simpler because you skipped an essential part of the solution. Why is sin 18° equal to (√5-1)/4 ? To make your solution complete you have to make that part of the solution.
      And also your statement 1 = e^(i 360° n) is not correct. It has to be 1=e^(i2𝜋*n). The exponent has to be a number and not something with degrees in it.

    • @governmentis-watching3303
      @governmentis-watching3303 หลายเดือนก่อน +3

      ​@henkhu100 can't be bothered to read either the solution or the criticism. The solutions are 1/5 rotations around the complex plain starting at 1. That is what was intended to be communicated

    • @henkhu100
      @henkhu100 หลายเดือนก่อน +4

      @@governmentis-watching3303 Ok, but that does not mean that what he writes may be wrong. An expression like e^(360 degrees) has no meaning at all. If we write e^(2*pi) we have a real number for the exponent. We don't write e^(2*pi radians) because that does not have any meaning. Just like we can write √ 360 but not √(360 degrees).
      So my comment was: if you solve a problem use correct formulations and write things that have a menaning, so don't use expressions like e^(some degrees).

    • @NguyênThái-q7k
      @NguyênThái-q7k 4 วันที่ผ่านมา

      I think he said no polar form at the start

  • @duggydo
    @duggydo 2 หลายเดือนก่อน +189

    Does anyone else miss the pokeball mic? Maybe a special return of the pokeball episode before the end of the year?

  • @sadhanaduttapramanik2663
    @sadhanaduttapramanik2663 2 หลายเดือนก่อน +91

    4:26 THAT X² IN THAT STEP STAYED AS "X" FOREVER RAAAAAAAA
    Unsatisfactory 😭 once you see it, you can't unsee it

    • @jesusthroughmary
      @jesusthroughmary 2 หลายเดือนก่อน +9

      I saw it immediately because he actually mentioned it but didn't fix it

    • @gheffz
      @gheffz 2 หลายเดือนก่อน +1

      Yes, I spotted that, too, and wanted it to be corrected as BPRP did correcting a previously missed one at 4:24.

  • @rayanlima1799
    @rayanlima1799 หลายเดือนก่อน +2

    8:46 You can use ψ (psi), it's the reverse symmetrical of the golden ratio φ (phi)

  • @Nikioko
    @Nikioko หลายเดือนก่อน +4

    You can solve this either algebraically or geometrically.
    For the algebraic solution, just factor out x - 1 and solve the resulting 4th degree polynomial:
    x⁵ - 1 = 0
    (x - 1) (x⁴ + x³ + x² + x + 1) = 0
    etc.
    For the geometrical solution, just use Euler's formula:
    xₙ = ⁵√1 ⋅ [cos(n ⋅ 360° / 5) + i ⋅ sin(n ⋅ 360° / 5)]
    n = 1→5
    So, basically:
    x₁ = cos(72°) + i ⋅ sin(72°)
    x₂ = cos(144°) + i ⋅ sin(144°)
    x₃ = cos(216°) + i ⋅ sin(216°)
    x₄ = cos(288°) + i ⋅ sin(288°)
    x₅ = cos(360°) + i ⋅ sin(360°)

  • @The-Last-Rain
    @The-Last-Rain หลายเดือนก่อน +17

    Love the shirt in the thumbnail. For those who do not know, it means algebra in Arabic.

    • @SimpCe
      @SimpCe หลายเดือนก่อน +2

      Well,algebra came from middle east soo,you are completely right

  • @Quasarbooster
    @Quasarbooster 2 หลายเดือนก่อน +30

    I love the connection between phi and this quintic/pentagons

    • @Chessbutmostlyrandomstuff
      @Chessbutmostlyrandomstuff 2 หลายเดือนก่อน +1

      Is it just me that saw this as a tiktok search thing? TH-cam has done this with other shorts

    • @isavenewspapers8890
      @isavenewspapers8890 2 หลายเดือนก่อน

      @@Chessbutmostlyrandomstuff Nice profile picture :)

    • @tardisman602
      @tardisman602 2 หลายเดือนก่อน

      ​@@Chessbutmostlyrandomstuff
      I think it's like some random words just get that search thing, it's a bit odd

    • @joseph_soseph9611
      @joseph_soseph9611 หลายเดือนก่อน

      ​@@Chessbutmostlyrandomstuff holy hell

    • @Chessbutmostlyrandomstuff
      @Chessbutmostlyrandomstuff หลายเดือนก่อน

      @@isavenewspapers8890 ty

  • @johndoyle2347
    @johndoyle2347 หลายเดือนก่อน

    One of the best videos I have seen. Excellent mastery of Ceva versus Delanges math when you said that it didn't matter because they were symmetric. Ambiguities and dualities were combined at that point in the calculations.

  • @xinpingdonohoe3978
    @xinpingdonohoe3978 2 หลายเดือนก่อน +17

    Hence why I like mutlivalued functions. x=⁵√1, write out the 5 values by rotating by 2π/5 each time from 1, and we're done.

    • @Krybia
      @Krybia 2 หลายเดือนก่อน +1

      Como se usa esse texto azul?

    • @Kiririll579
      @Kiririll579 2 หลายเดือนก่อน +1

      ​@@KrybiaAs far as I noticed, those are added automatically by TH-cam

    • @lotaniq4449
      @lotaniq4449 2 หลายเดือนก่อน +1

      Ok but he said he wouldn’t use polar forms

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 2 หลายเดือนก่อน +1

      ​@@Krybia I don't. I think TH-cam adds it automatically. Which text was blue?

    • @Brocseespec
      @Brocseespec 2 หลายเดือนก่อน

      ​@@xinpingdonohoe3978 the smol 5

  • @bigwasabi
    @bigwasabi หลายเดือนก่อน +4

    I love seeing these kind of videos and knowing how to solve them

  • @diskhover
    @diskhover 2 หลายเดือนก่อน +3

    The golden ratio emerges here, sometimes pi, sometimes e^x, etc.... show up. When I look back, it is those surprising or unexpected little nuggets we find that got me hooked on mathematics early on.

  • @OgSuperHero
    @OgSuperHero หลายเดือนก่อน +3

    An easier way at 2:58 if u divide by x² then u will get a equation like x² + 1/x² + x + 1/x + 1 . Then u can assume x + 1/x as y so new equation will be y² + y - 1 and then u can solve it from there

    • @AbdullaAlQemzi1
      @AbdullaAlQemzi1 หลายเดือนก่อน

      Please explain how if (x + (1/x)) = Y how did you get y² +y -1
      To me it doesn't make sense, its like you combined the x+1/x or something. Waiting for explanation please. 😊

    • @AbdullaAlQemzi1
      @AbdullaAlQemzi1 หลายเดือนก่อน

      I checked using gbt it cannot do it.

    • @OgSuperHero
      @OgSuperHero หลายเดือนก่อน

      @@AbdullaAlQemzi1 ok so heres detailed explanation take "1/x + x" as y now
      y² = 1/x²+ x² +2
      y² - 2 = 1/x² + x²( Subtract 2 from both sides)
      so the new eqn becomes
      y² - y -2 + 1 = 0
      y² - y - 1 = 0
      if u still dint get it dont hesitate to ask again

    • @AbdullaAlQemzi1
      @AbdullaAlQemzi1 หลายเดือนก่อน

      ​@@OgSuperHeroWoah.😮 Thanks bro I understood. If you don't mind can you explain how to move on from your equation to find solutions. Do you use euler theory ? And why not use Z⁵=1 from the beginning and use euler on that?

  • @kkkk-g4w7l
    @kkkk-g4w7l 2 หลายเดือนก่อน +7

    we can also divide by x^2 and reduce the equation into quadratic by substituitng x+1/x as t

    • @Ninja20704
      @Ninja20704 2 หลายเดือนก่อน +3

      He has done that before in previous videos on the exact same quartic equation.

    • @alanclarke4646
      @alanclarke4646 2 หลายเดือนก่อน

      Only by assuming x0.

    • @Ninja20704
      @Ninja20704 2 หลายเดือนก่อน

      @@alanclarke4646 it is not assumed because we can very easily verify from the original equation that x cannot be 0

  • @cdkw2
    @cdkw2 2 หลายเดือนก่อน +24

    1:10 I am surprised this is my first time seeing this type of method

  • @RealFreshDuke
    @RealFreshDuke 2 หลายเดือนก่อน +70

    "-1/phi" could just be called "1-phi".

    • @karl131058
      @karl131058 2 หลายเดือนก่อน +9

      Exactly! And phi^2 could be replaced by phi+1, to make the roots look a bit simpler...
      And you don't need to put b=-1/a and replace and multiply by a to get the quadratic equation, because you have the sum S and the product P of a and b, and by theorem of Vieta, a and b ar the solutions to y^2 - Sy + P = 0

    • @junkgum
      @junkgum 2 หลายเดือนก่อน +3

      Phi low so phi.

  • @gabest4
    @gabest4 2 หลายเดือนก่อน +5

    9:30 You can not only figure out sin(72) but also the sin and cos value of 72, 144, 216, 288. Those angles which you can raise to the fifth power to rotate back to 1 on the complex plane.

    • @mikefochtman7164
      @mikefochtman7164 2 หลายเดือนก่อน

      Thanks for that. When he said he wasn't going to use complex/ polar, I was disappointed. Rotations in the complex plane was the first thing I thought of to find all five solutions.

    • @gabest4
      @gabest4 2 หลายเดือนก่อน

      @@mikefochtman7164 Yes, I did not want to point that out, since it was an exercise to solve it this way. Just reflected that real and imaginary parts give us all the other values as well.

  • @isavenewspapers8890
    @isavenewspapers8890 2 หลายเดือนก่อน +57

    9:24 You mean sine of 72 DEGREES.

    • @Dom-kp6ur
      @Dom-kp6ur 2 หลายเดือนก่อน +7

      Granted 72 radians is a ridiculous statement

    • @DirectedArt
      @DirectedArt หลายเดือนก่อน

      Yeah 2π/5

  • @guidosalescalvano9862
    @guidosalescalvano9862 หลายเดือนก่อน +1

    Basically this describes all rotations that are k * 2 pi / 5 for k element of {1,2,3,4,5} expressed as a complex number

  • @thirstyCactus
    @thirstyCactus 2 หลายเดือนก่อน

    So satisfying! I was never good at this kind of math, so it's really interesting to see how you go about solving these equations.

  • @msallamalkurdi2734
    @msallamalkurdi2734 2 หลายเดือนก่อน +1

    IS THE FISRT TIME I NOTICED YOU TYPED ON YOU T SHIRT AL GEBRA ARABIC "I AM VERY PROUD"

  • @chideraachinike7619
    @chideraachinike7619 2 หลายเดือนก่อน +6

    I was hoping for five values for x.
    Thanks for continuing these videos, it's been ages and I just came back to playing with math.
    You aged a little, but that makes it all the more beautiful ❤
    Much love from here! ❤️ ❤

    • @st8113
      @st8113 2 หลายเดือนก่อน +1

      +-

    • @jesusthroughmary
      @jesusthroughmary 2 หลายเดือนก่อน +5

      You got five values, the second and third boxes are pairs of complex conjugates

  • @Blaqjaqshellaq
    @Blaqjaqshellaq 2 หลายเดือนก่อน

    Since phi^2=phi + 1, it follows that phi^2 - 4=phi - 3, so the first two solutions can be presented as [phi+i*(3-phi)^1/2]/2 and [phi-(phi-3)^1/2]/2.
    For the other two, consider that -1 - 4*phi^2=-1 - 4*phi - 4=-5 - 4*phi. So we can present these solutions as [1+i*(5+4*phi)^1/2]/(2*phi) and [1-i*(5+4*phi)^1/2]/(2*phi).

  • @vincent.0705
    @vincent.0705 2 หลายเดือนก่อน +552

    Wouldn't x^5 = 0 be the easiest? 😂😂

    • @Musterkartoffel
      @Musterkartoffel 2 หลายเดือนก่อน +73

      We want the simplest, not the freeest

    • @subhadip_here
      @subhadip_here 2 หลายเดือนก่อน +4

      ​@@Musterkartoffel😂😂

    • @polaris_babylon
      @polaris_babylon 2 หลายเดือนก่อน +32

      That would be the most trivial

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 2 หลายเดือนก่อน +26

      Unless you're willing to extrapolate and include x⁵=x⁵ I guess.

    • @ItsMeTheUser
      @ItsMeTheUser 2 หลายเดือนก่อน +1

      !No

  • @rainerzufall42
    @rainerzufall42 หลายเดือนก่อน +4

    You could have used φ² = φ + 1, 1/φ = φ - 1, 1/φ² = 2 - φ for simplification!
    => x = 1 || x = ( - φ ± i √(3 - φ) ) / 2 || x = ( φ - 1 ± i √(φ + 2) ) / 2

    • @rainerzufall42
      @rainerzufall42 หลายเดือนก่อน +2

      I think, you could even reduce this to simple roots and numbers, as a homework.

  • @shilpakulkarni119
    @shilpakulkarni119 หลายเดือนก่อน +2

    Can we not use nth root of unity and just get all the roots in their respective Euler's form? 😅

  • @beaumatthews6411
    @beaumatthews6411 2 หลายเดือนก่อน

    OMG I LOVE THAT PHI POPPING OUT AS RELATES TO THE COMPLEX CIRCLE

  • @anarchosnowflakist786
    @anarchosnowflakist786 2 หลายเดือนก่อน

    very nice ! my first thought was to take 1 as e^(i2pi*k) with k any integer, so the fifth root would be e^(i2pi*k/5) giving us the five different solutions of e^0=1, e^(i2pi/5), e^(i4pi/5), e^(i6pi/5), e^(i8pi/5)

  • @peaches3359
    @peaches3359 2 หลายเดือนก่อน +3

    Wow! That was really enlightening.

  • @joseph_soseph9611
    @joseph_soseph9611 หลายเดือนก่อน

    So, the simplest quintic equation involves a whole bunch of factoring, a non-linear system of equations, and the golden ratio. Pretty cool

  • @benardolivier6624
    @benardolivier6624 2 หลายเดือนก่อน +5

    1-sqrt(5)/2 is usually the conjugate of phi, or phi bar.

    • @Darisiabgal7573
      @Darisiabgal7573 2 หลายเดือนก่อน

      Fu bar’s little brother.

  • @dfh1517
    @dfh1517 2 หลายเดือนก่อน +2

    So you have derived a closed form of cos 2n pi/5, sin 2n pi/5 n 0..4 . Thats nice

  • @RoyhaneHangga
    @RoyhaneHangga หลายเดือนก่อน +1

    I figured as much. In the complex plane, the results of a given power (example: 4) has four results, and all of them are in the complex plane. And if you connect the results' coordinates, you'll notice the bigger the power is, the results will form a circle.

  • @md-sl1io
    @md-sl1io 2 หลายเดือนก่อน +1

    x is 1
    the other 4 solutions (since its a power of 5 equation is has 5 solutions) are all equally spread around the complex plane (72 degrees apart) with a size 1, use trigonometry to find out the real and imaginary componants of each

    • @jesusthroughmary
      @jesusthroughmary 2 หลายเดือนก่อน

      @@md-sl1io he explicitly said he wasn't doing that because it was too easy

  • @caiolopezcomz
    @caiolopezcomz หลายเดือนก่อน

    The marker switches are just as impressive

  • @ElectricalStorm
    @ElectricalStorm 2 หลายเดือนก่อน +1

    Oh wow I didnt even notice I was early becuase I was so invested! Amazing video

  • @padla6304
    @padla6304 หลายเดือนก่อน

    i like your channel
    curiosity and perseverance with which you bring the decision to the end
    my like and follow you

  • @DeeBeeGames101
    @DeeBeeGames101 2 หลายเดือนก่อน

    Brilliant! Now integrate the regular factorial and super factorial of x (sf(x))

  • @F1r1at
    @F1r1at 2 หลายเดือนก่อน +2

    since b = -1/a shouldn't b be equal to -2/(1 + sqrt(5))?

  • @abdulmalek1118
    @abdulmalek1118 2 หลายเดือนก่อน +7

    BTW, for those who don't know the word " الجبر ", it means " Algebra "
    As an Arab person, I feel very happy to see you using this word ❤

  • @Shack263
    @Shack263 2 หลายเดือนก่อน +1

    Question. After you do polynomial division of x^5/(x-1), you get coefficients 111110. What does this mean, and how does it translate to x^4+...+1?

    • @rainerzufall42
      @rainerzufall42 หลายเดือนก่อน +1

      The 0 is garbage, unless used for the other side! For the rest: All coefficients are 1: 1 x^4 + 1 x³ + 1 x² + 1 x + 1 (= 0) || x -1 = 0

    • @nightytime
      @nightytime หลายเดือนก่อน +1

      1*x^4 + 1*x^3 + 1*x^2 + 1*x^1 + 1*x^0 + 0/(x - 1)

  • @softy8088
    @softy8088 2 หลายเดือนก่อน

    1:03 I know how to divide polynomials the long way but I don't recall ever being taught this way (which you call "synthetic division").

    • @giulygta8682
      @giulygta8682 หลายเดือนก่อน

      Actually that’s the Ruffini’s rule, and works only for divisions by first degree polynomials

  • @Punchbadguy
    @Punchbadguy หลายเดือนก่อน +2

    I'm going to use the "come on man" theorem which states that the more 'erm acshually' an argument is in math, the less validity it has.

  • @lamorkitu
    @lamorkitu 2 หลายเดือนก่อน

    Having 5 solutions, we can take 1, than we take the non arytmetic solution (with the module of a complex and its angle), select a numbrr with 1 as the module and with either 1/5 of 2π, or 2/5 , 3/5 and 4/5 of 2π as the angle
    Than just take cos and sin and you have your 5 solutions
    (And sorry for my bad english(

  • @dumitrudraghia5289
    @dumitrudraghia5289 2 หลายเดือนก่อน

    Cu stilul tău de a prezenta problemele vei reuși să îndepărtezi mulți vizitatori de matematica adevărată.

  • @piast99
    @piast99 หลายเดือนก่อน

    Wow. I can't remember all those tricks to factor the polynomial. I'd go another route: the solution would be any complex number z which modulus is 1 and the 5*arg(z) mod 2pi = 0. Then you may figure the arguments as 0, 2*pi/5, 4*pi/5, 6*pi/5 and 8*pi/5.

  • @ChinalurumUkairo
    @ChinalurumUkairo 2 หลายเดือนก่อน

    What an amazing video bprp! I am only an 8th grader but ever since I saw your calculus videos, I have been engrossed with your channel. Is it ok if you can make a video with a question featuring an improper integral, a derivative, a series and a limit all in one question where it is aimed at Calculus 1 and 2 students. Thank you!

  • @Experiencingphysics
    @Experiencingphysics หลายเดือนก่อน +1

    But for a-1/a where a belongs to (-♾️,-2]U[2, ♾️) then how a-1/a = 1

  • @MyFal717
    @MyFal717 หลายเดือนก่อน

    Good job!

  • @alybatta1664
    @alybatta1664 หลายเดือนก่อน

    nice T-shirt BTW in tha thumbnail "الجبر"

  • @Hazza2
    @Hazza2 หลายเดือนก่อน

    Mmm if you bodice with any of these polynomials of the form x^n-1=0, 1 is always a solution. To get the remaining polynomial you find need to do synthetic division! Notice that x^n-1/x-1 is the sum of a geometric series with common ratio of x upto the n-1th term

    • @Hazza2
      @Hazza2 หลายเดือนก่อน

      Made a lot of typos but I hope people can understand

  • @Muhand-AL-oqlh
    @Muhand-AL-oqlh 4 วันที่ผ่านมา

    I think u can use (ln). Like
    5ln(x)=ln(1)
    Ln(x)=ln(1)/5
    X=1

  • @keeppy5530
    @keeppy5530 หลายเดือนก่อน

    3:59 there: is abx(2) or abx?

  • @charlievane
    @charlievane 2 หลายเดือนก่อน +83

    isn't x⁵=0 simpler ?

    • @blackpenredpen
      @blackpenredpen  2 หลายเดือนก่อน +32

      @@charlievane 😂

    • @Musterkartoffel
      @Musterkartoffel 2 หลายเดือนก่อน +13

      Thats not simpler,thats free

    • @msman3249
      @msman3249 2 หลายเดือนก่อน +15

      x⁵=1 is still the simplest one that still gives a challenge, the definition of 'simple' and 'challenge' is left as an exercise to the reader.

    • @anglaismoyen
      @anglaismoyen 2 หลายเดือนก่อน +2

      @@Musterkartoffel How is it free if x can't be any value?

    • @arrowob
      @arrowob 2 หลายเดือนก่อน

      @@anglaismoyen0?

  • @стуль2.0
    @стуль2.0 หลายเดือนก่อน

    7:11 you have a mistake, u found b incorrectly, remember that b=-1/a => b=2/-1-√5 and 2/1+√5

  • @FiendishBeret
    @FiendishBeret หลายเดือนก่อน

    Is it coincidence that I did this for fun the other day while waiting between lessons

  • @hyronvalkinson1749
    @hyronvalkinson1749 หลายเดือนก่อน

    How about e^(i*0.4*pi)? That works too
    This is roughly 0.309 + 0.951*i, but I was just thinking 72 degrees in the complex plane.

  • @jozenthejozarian2564
    @jozenthejozarian2564 หลายเดือนก่อน

    Is there actually a practical operation where this sort of thing is necessary?

  • @yoyoezzijr
    @yoyoezzijr 2 หลายเดือนก่อน

    An easier way to factor it is to use geometric series. (x^5 - 1) / (x -1) is a geometric series with first term 1, 5 terms, and ratio x. So 1 + x + x² + x³ + x⁴

  • @seriouslyscared2912
    @seriouslyscared2912 หลายเดือนก่อน

    I notice a lot of asian people (myself included) write it out like this. Just kinda uniform then everywhere and I love that I could follow it

  • @nurrohmadi7852
    @nurrohmadi7852 2 หลายเดือนก่อน +7

    Isnt it b = -2/(1+√5) ?

  • @LucasMatiasHerreraC
    @LucasMatiasHerreraC หลายเดือนก่อน

    es una ecuacion de grado 5, por lo tanto, siempre generaria 5 respuestas correctas, las cuales se pueden apreciar en el video, el numero de respuestas siempreesta indicado por el indice de una variable, por ejemplo, x'2=5x, x=5 y x=0

  • @MiddleEastSky
    @MiddleEastSky หลายเดือนก่อน

    Like ur t-shirt ❤

  • @mikeanthonybrooks
    @mikeanthonybrooks 2 หลายเดือนก่อน

    I love how he says "now, this is the part where we have to think a little bit"
    So,what in the math have we been doing the whole time???? We did all this without thinking??? 😮😂

    • @isavenewspapers8890
      @isavenewspapers8890 2 หลายเดือนก่อน +2

      That statement probably means critical thinking. You don't need critical thinking to apply a formula.

  • @kiddhyw1
    @kiddhyw1 หลายเดือนก่อน +1

    ax *bx = abx? shouldn’t it be abx^2? 4:03

    • @kiddhyw1
      @kiddhyw1 หลายเดือนก่อน +1

      nevermind

    • @Thatlockedrole
      @Thatlockedrole หลายเดือนก่อน

      Yes :)

  • @ottone2863
    @ottone2863 หลายเดือนก่อน

    You know that thinks fun 1 through 10 and then we show the expression upon chemistry. What won through is in standard in chemical makeup, Constance and biological result with identity of 1 whole 2 maximum hole and cube effect in unstable acceleration, as well as I can't remember what is called in division but when it. Divides an acts across the axes and catalysts. I think that's fun. You should do that 1 'cause that 1's fun. Yeah, one is an expression, is it an? Identity, and when one is expressed, it may not have a hole that accepts 10 as a whole of interval. The interval set makes extend to the 10th place before or after whole one equals in holes. It's weird, but it's our universe and it's how it actually works.

  • @General12th
    @General12th 2 หลายเดือนก่อน

    So good!

  • @denelson83
    @denelson83 2 หลายเดือนก่อน

    Simple. The roots are the complex numbers with magnitude 1 and arguments of 0, 2π/5, 4π/5, 6π/5, and 8π/5.

  • @willbishop1355
    @willbishop1355 หลายเดือนก่อน

    Needs the final step: calculate the real and imaginary parts of each answer!

  • @Jominer08
    @Jominer08 หลายเดือนก่อน

    JUST learnt this in class today lol

  • @Gsudi
    @Gsudi หลายเดือนก่อน

    Shouldn't there be an i somewhere in the 4 complex solutions?

  • @Vansh-j5z
    @Vansh-j5z 2 หลายเดือนก่อน

    Taking log both sides
    log(x⁵)=log1
    5 log(x) = 0
    log(x) = 0
    x = e⁰
    x = 1

  • @JohnSmith-nx7zj
    @JohnSmith-nx7zj 2 หลายเดือนก่อน

    2:33 “any polynomial can be factored in terms of linear and quadratic”
    Wouldn’t that mean any polynomial would have solutions expressible in terms of linear terms and square roots (possible complex roots)? That’s clearly not possible. x^3-2=0 for starters.

  • @DanCarloDioquino
    @DanCarloDioquino 2 หลายเดือนก่อน +1

    Love how golden ratio appeared

  • @farmerjohn6192
    @farmerjohn6192 2 หลายเดือนก่อน +1

    Why not draw a circle and divide into 2pi/5 sectors?

    • @didierleonard7125
      @didierleonard7125 2 หลายเดือนก่อน

      usually it s easier to go into the complex as z^5=1 and result right as you said

  • @dieuwer5370
    @dieuwer5370 2 หลายเดือนก่อน +4

    Why not use Eulers Identity? e^iπ = -1? Therefore: e^i2kπ = 1, x^5 = e^i2kπ, etc.
    In the end, it is a circle in the complex plane with roots at: (0°), (72°), (144°), (216°), and (288°).

    • @pr0ntab
      @pr0ntab 2 หลายเดือนก่อน +4

      At the very beginning he said he didn't want to use that method and wanted to show it in the more difficult algebraic way which is juuuust barely possible.

  • @martinphipps2
    @martinphipps2 หลายเดือนก่อน

    x^5-1 = x^5 - x^4 + x^4 - x^3 + x^3 - x^2 + x^2 - x + x - 1
    =(x-1)(x^4 + x^3 + x^2 + x + 1)

  • @Aslan-n3b5u
    @Aslan-n3b5u หลายเดือนก่อน

    Great! But why don't use that:
    x^n=1
    x=e^(2πk/n), k € N

  • @optimusprime3989
    @optimusprime3989 หลายเดือนก่อน

    7:07 этот типок лепит детские ошибки: если b=-(1/a), то подставив а из строки выше, мы получим, что b=-(2/(1±sqrt5)).
    ну и фи получается равно 0, ибо два его корня должны быть равны 0, ибо только 0 в любой степени дает 1.
    что это за начинающий математик?

  • @Flergo_
    @Flergo_ หลายเดือนก่อน

    4:20 (ab+2)x. x should have been raised to the power of 2

  • @Phi1618033
    @Phi1618033 2 หลายเดือนก่อน

    I wasn't expecting the Golden Ratio to pop out of this at some point.

  • @brololler
    @brololler 2 หลายเดือนก่อน

    De moivres theorem and symmetry around the unit circle for an elegant approach?

  • @Rayzzen11ttv
    @Rayzzen11ttv 2 หลายเดือนก่อน

    To solve the equation \( X^5 = 1 \) where \( X
    eq 1 \), we are looking for the fifth roots of unity. The solutions to this equation can be expressed in the form:
    \[
    X = e^{2\pi i k / 5}
    \]
    where \( k \) is an integer. The fifth roots of unity are:
    1. \( k = 0 \): \( X = e^{2\pi i \cdot 0 / 5} = 1 \)
    2. \( k = 1 \): \( X = e^{2\pi i / 5} \)
    3. \( k = 2 \): \( X = e^{4\pi i / 5} \)
    4. \( k = 3 \): \( X = e^{6\pi i / 5} \)
    5. \( k = 4 \): \( X = e^{8\pi i / 5} \)
    Since we want the solutions where \( X
    eq 1 \), the valid solutions are:
    1. \( X = e^{2\pi i / 5} \)
    2. \( X = e^{4\pi i / 5} \)
    3. \( X = e^{6\pi i / 5} \)
    4. \( X = e^{8\pi i / 5} \)
    In summary, the solutions to \( X^5 = 1 \) with \( X
    eq 1 \) are:
    - \( e^{2\pi i / 5} \)
    - \( e^{4\pi i / 5} \)
    - \( e^{6\pi i / 5} \)
    - \( e^{8\pi i / 5} \)

  • @NightWanderer31415
    @NightWanderer31415 หลายเดือนก่อน

    Why not just use the fact that the 5th roots of unity are separated by an angle of 2pi/5 on the unit circle?

  • @ibperson7765
    @ibperson7765 2 หลายเดือนก่อน +5

    Last four roots are complex. ANY number >1 will increase when raised to 5th power. And ANY number

    • @isavenewspapers8890
      @isavenewspapers8890 2 หลายเดือนก่อน +2

      And that was the only real root in the given solution set. What exactly is the problem here?
      Edit: Hey all, I will also take the opportunity to edit my comment. The original comment used to say that the video was straight-up wrong, but after my reply, this statement has been removed.

    • @ibperson7765
      @ibperson7765 2 หลายเดือนก่อน +2

      @@isavenewspapers8890i didnt say there was a problem, just that 1 is the only real root and the others are complex.

    • @isavenewspapers8890
      @isavenewspapers8890 2 หลายเดือนก่อน

      ⁠@@ibperson7765 You know TH-cam shows when your comments are edited, right?

    • @ibperson7765
      @ibperson7765 2 หลายเดือนก่อน

      @@isavenewspapers8890 I really thought you commented long after I edited it. But if not, then youre right👍 because I did first comment implying/claiming there was a problem.

    • @isavenewspapers8890
      @isavenewspapers8890 2 หลายเดือนก่อน

      @@ibperson7765 I see.

  • @flowingafterglow629
    @flowingafterglow629 2 หลายเดือนก่อน

    Does that approach for solving the quartic work for all quartics? That was sweet.

    • @carultch
      @carultch 2 หลายเดือนก่อน

      No. The quartic is the end-of-the-line, when it comes to a closed-form formula in elementary functions as the master key to solve any polynomial of that degree. There are special case quintics where there exists a formula, but Galois proved there can be no such general formula for quintics, or anything beyond.

    • @flowingafterglow629
      @flowingafterglow629 2 หลายเดือนก่อน

      @@carultch OK, I don't know anything about Galois, but I asked about quartics, not quintics. When I write out the general equation
      x^4+ax^3+bx^2+cx+f
      I can use 4 variables, p, q, d and e in the form
      (x^2+px+d)*(x^2+qx+e)
      and that gives me
      de = f
      p + q = a
      pq+d+e = b
      pe+dq = c
      These reduce to the values in this video where d = 1 and e = 1.
      That should be solvable, right? It might not be trivial to solve, but there are 4 equations/4 unknowns.

    • @carultch
      @carultch หลายเดือนก่อน

      @@flowingafterglow629 Sorry, I misunderstood your question. I had my mind on quintics, since his original video was about quintics.
      The quartic in general is solvable. Ferrari, who worked with Cardano, the namesake of the cubic formula, derived the general quartic formula, using many of the same principles as deriving the cubic formula.
      You're method is legit, however you will ultimately need to solve a quartic anyway, to solve that system of four equations. So it doesn't really make any progress.

  • @FiReTOfficial
    @FiReTOfficial 2 หลายเดือนก่อน

    Can you make a video explaining how to solve this?
    √(2x²) - √(2x) = 3

    • @carultch
      @carultch หลายเดือนก่อน

      Given:
      sqrt(2*x^2) - sqrt(2*x) = 3
      Extract all coefficients from square root terms, and shuffle to the left:
      sqrt(2)*sqrt(x^2) - sqrt(2)*sqrt(x) - 3 = 0
      Divide thru by sqrt(2):
      sqrt(x^2) - sqrt(x) - 3/sqrt(2) = 0
      Reverse the nesting order of the first term:
      sqrt(x^2) = sqrt(x)^2
      Let u = sqrt(x), and rewrite in the u-world.
      u^2 - u - 3/sqrt(2) = 0
      Now we can solve for u with a quadratic formula:
      u = (1 +/- sqrt(1 - 4*-3/sqrt(2)))/2
      Simplify:
      u = 1/2 +/- sqrt(1 + 6*sqrt(2))/2
      Since u = sqrt(x), this means u can only be a positive number, by definition of the square root function. So we can rule out the lower solution to the quadratic formula as an extraneous solution. Upon evaluating it, you'll see that u is approximately -1.04 and +2.04. Only the larger solution for u, is the one that applies to the original equation. Thus:
      u = 1/2 + sqrt(1 + 6*sqrt(2))/2
      Square it, to find the corresponding x-value:
      x = (1/2 + sqrt(1 + 6*sqrt(2))/2)^2
      Expand and simplify, and you get:
      x = 1/2 + 3*sqrt(2)/2 + 1/2*sqrt(1 + 6*sqrt(2))

  • @budsnz
    @budsnz หลายเดือนก่อน

    I’m trying to think of a practical application of this

  • @richardslater677
    @richardslater677 2 หลายเดือนก่อน +1

    If that’s the simplest one, I’d hate to see what a difficult one looks like

  • @EverySoulGamer
    @EverySoulGamer หลายเดือนก่อน +9

    X⁵=X⁰
    5=0
    🗣️🔥🙏🏻

    • @obz1357
      @obz1357 หลายเดือนก่อน +6

      This is meth not math 😭

    • @EverySoulGamer
      @EverySoulGamer หลายเดือนก่อน

      @obz1357 THE ONE PIECE!
      THE ONE PIECE IS REEEEEEEEEEEEEEEEEEEEEEAL!

    • @bolt2839
      @bolt2839 28 วันที่ผ่านมา

      Mathmathecally wrong
      How about you stay on anime plz don't disturb us

    • @bolt2839
      @bolt2839 28 วันที่ผ่านมา

      Mathmathecally wrong
      How about you stay on anime plz don't disturb us

    • @EverySoulGamer
      @EverySoulGamer 28 วันที่ผ่านมา

      @@bolt2839 I am an imo aspirant bruv ofc it's a joke 💀

  • @sudoer-Ht
    @sudoer-Ht 2 หลายเดือนก่อน +3

    When I saw this I immediately thought "roots of unity". But yeah this is a creative way. (Also why not just use the quintic formula? oh wait... :)

    • @sudoer-Ht
      @sudoer-Ht 2 หลายเดือนก่อน

      Also, why not just use the geometric series formula for x^4+x^3+x^2+x+1? 🤔

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 2 หลายเดือนก่อน +2

      ​@@sudoer-Ht Because this is not a geometric series? A series goes on forever, up to infinity.

    • @sudoer-Ht
      @sudoer-Ht 2 หลายเดือนก่อน

      @@bjornfeuerbacher5514 series can be finite. Search for geometric series sum formula

    • @tfg601
      @tfg601 2 หลายเดือนก่อน

      @@bjornfeuerbacher5514 No, the term "series" does not mean it goes on forever. The two terms "infinite series" do.

    • @isavenewspapers8890
      @isavenewspapers8890 2 หลายเดือนก่อน +1

      @@tfg601 A series is, by definition, an infinite sum.

  • @CaroSuon
    @CaroSuon 2 หลายเดือนก่อน +2

    At 7:06 it shouldve been b=2/(1-sqrt(5))

    • @CryonicVevo
      @CryonicVevo หลายเดือนก่อน

      -2 but yeah

    • @AliceYobby
      @AliceYobby หลายเดือนก่อน

      Yeah I thought so too. He also forgot to add the ^2 on (ab+2)x even after mentioning it. Kind of sloppy stuff

  • @LawlFrank
    @LawlFrank หลายเดือนก่อน

    If a = 1/2 + 1/2 sqrt(5) and a + b = 1, then it is obvious that b should be 1/2 - 1/2 sqrt(5), since the 1/2s become 1 and the sqrts cancel out.

  • @andreimiga8101
    @andreimiga8101 2 หลายเดือนก่อน

    Now try doing it using the quartic formula (and use up the entire marker to finish) 😂.

  • @anuragguptamr.i.i.t.2329
    @anuragguptamr.i.i.t.2329 2 หลายเดือนก่อน +1

    Co-efficient (ab+2) should be with X^2.

  • @Ivan_StandWithUkraine
    @Ivan_StandWithUkraine หลายเดือนก่อน

    Nice one 👍