Basics of Modular Arithmetic

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 พ.ย. 2024

ความคิดเห็น • 89

  • @pianoforte17xx48
    @pianoforte17xx48 3 ปีที่แล้ว +17

    OMG just on time! I have been taking this lesson for a month and I can't wrap my head around it. Can't wait to finally understand it!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +2

      Wonderful!

  • @haricharanbalasundaram3124
    @haricharanbalasundaram3124 3 ปีที่แล้ว +7

    Modular arithmetic is great for finding the last digits of very large exponents... like 7^55, for example. 49 is congruent to -1 (mod 10), 7^4 is congruent to -1^2 = 1 (mod 10) . 55 is basically 13*4 + 3, so the last digit is the last digit of 7^3, which is 3.

  • @LOL-gn7kv
    @LOL-gn7kv 3 ปีที่แล้ว +16

    Modular makes everything so easy!
    Even if you don't know too much of it , it still useful like a congruent to b modulo n can be written as a = kn + b for some integer k and it just becomes a linear equation thereafter. Also syber make this a series ;)

  • @diogenissiganos5036
    @diogenissiganos5036 3 ปีที่แล้ว +21

    Modular arithmetic; one of the most important aspects of mathematics

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +1

      IT COMES IN ABSTRACT ALGEBRA WHICH COMES IN PHYSICS, CHEMISTRY AND SO ON

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +5

      That's right!

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว

      @@SyberMath ARE YOU REPLYING TO ME?

    • @aahaanchawla5393
      @aahaanchawla5393 3 ปีที่แล้ว +1

      @@aashsyed1277 hey watch your caps

    • @leif1075
      @leif1075 3 ปีที่แล้ว

      @@SyberMath At 6:39 it doesnt just jave 2 solutions in mod 7 but an infinte mumber because as you said you can add any multiple of 7 so 12 for e.g. is another solution since 12 squared plus 3 equals 147 which is a multiple of 7.

  • @jakubwieliczko257
    @jakubwieliczko257 3 ปีที่แล้ว +6

    Awesome video! I am preparing for the olympiad so it was fun to see another perspective on modular arithmetic. Great explanation. Greetings from Poland! ❤💕💖

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Glad it was helpful! 💖

  • @manojsurya1005
    @manojsurya1005 3 ปีที่แล้ว +3

    This video reminds me of all the theorems and basics that I learned for modulo like fermat,Euler totient function,Wilson theorem,Chinese remainder theorem(for solving 3 congruent modulo).great video,u can make a video on each theorem briefly if u can

    • @haricharanbalasundaram3124
      @haricharanbalasundaram3124 3 ปีที่แล้ว

      I think those would be unlike the videos in this channel, since I think videos are made to help in problem solving, not for teaching itself. There are some MIT OCW lectures on it though, they are great

  • @242math
    @242math 3 ปีที่แล้ว +2

    you are a great teacher bro, thanks for taking us through the basics of a topic that is so confusing to many students, great job, excellent tutorial

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +1

      I appreciate that! 💖

  • @aleksszukovskis2074
    @aleksszukovskis2074 3 ปีที่แล้ว +4

    Yes! finally! I was searching for these!

  • @shreyan1362
    @shreyan1362 3 ปีที่แล้ว +3

    @Sybermath please continue this series.... this is really helpful 😊🤩

  • @mathsandsciencechannel
    @mathsandsciencechannel 3 ปีที่แล้ว +13

    I love this guy,always consistent,good explanation and good videos. Almost getting to 10k subscribers and he deserves it. Will get there someday bro.😍

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +2

      I appreciate that! 💖

  • @SimchaWaldman
    @SimchaWaldman 3 ปีที่แล้ว

    One of my favorite topics. And its symbols... feast for my eyes!

  • @kubabartmanski7254
    @kubabartmanski7254 ปีที่แล้ว

    Very neat and elegant introduction to the topic!

  • @clovissimard3099
    @clovissimard3099 5 หลายเดือนก่อน

    TEMPS-HASARD MODULO 3
    Pour en revenir au sujet qui nous occupe, dans le monde subatomique, il se pourrait que les phénomènes ne suivent pas une ligne de temps unique, ce qui est conforme à la théorie de la gravité quantique et de la « non-existence » temporelle.

  • @RealEverythingComputers
    @RealEverythingComputers 2 หลายเดือนก่อน

    Thanks for the great explanation - great for an abstract algebra course

    • @SyberMath
      @SyberMath  2 หลายเดือนก่อน

      Glad you like it!

  • @wannabeactuary01
    @wannabeactuary01 หลายเดือนก่อน

    good video - great revision

  • @sergeigrigorev2180
    @sergeigrigorev2180 3 ปีที่แล้ว

    Really like this topic! I hope you will continue the Modular Arithmetics series

  • @deratu5517
    @deratu5517 3 ปีที่แล้ว

    Wow, I really do like this video! Hopefully there are many more topics that can be explained like this. Have a nice day

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Thank you! You too!

  • @sekarganesan902
    @sekarganesan902 3 ปีที่แล้ว +1

    Good introduction to modulo.

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Glad you think so!

  • @coefficient1359
    @coefficient1359 3 ปีที่แล้ว +1

    Great, bring more.

  • @tonyhaddad1394
    @tonyhaddad1394 3 ปีที่แล้ว +1

    Broo i like modular so much beacaus we can tested in real life and make life easier !!! ofcorse now we computers but it so intersting when we challenge our brain 😍😍

  • @SamBHodge
    @SamBHodge หลายเดือนก่อน

    Please let me learn more about this topic

  • @aayushve426
    @aayushve426 7 หลายเดือนก่อน

    great video man ! keep up the work !

  • @SamBHodge
    @SamBHodge หลายเดือนก่อน

    Thanks

  • @rafiihsanalfathin9479
    @rafiihsanalfathin9479 3 ปีที่แล้ว

    Can you do video like this a basic olympiad theorem and how to use it, but also longer and deep?, it would help me a lot!

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Will try in the future

  • @zainlam9965
    @zainlam9965 ปีที่แล้ว

    another small thing is wilson's theorem

  • @aashsyed1277
    @aashsyed1277 3 ปีที่แล้ว +1

    DAMN YOU ARE SO AWESOME....

  • @adityadarade4533
    @adityadarade4533 ปีที่แล้ว

    Love you bro thanks

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Np. Thank you! 🥰

  • @sakkiediereaper
    @sakkiediereaper ปีที่แล้ว +1

    😂 the title should be, Modular Arithmetic: The cheat code to Mathematics!

  • @Neemakukreti5421
    @Neemakukreti5421 ปีที่แล้ว +2

    couldnt understand the first example (x^2 +3_=0(mod7)after the whole adding 7 to both sides thing. To be specific, you equaled 7 to 0,which has been defined as 7's remainder and which is not the number itself... So how can one just add ita remainder to one side, and the dividend to the other..? A reply would be much appreciated

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      Adding 7 and 0 are equivalent because 7 is congruent to 0 mod 7. You can also think of it this way: all numbers in the form 7k where k is an integer are congruent mod 7. 7 and 0 are in the same group in that sense. All integers can be grouped into 7 groups mod 7 like 7k 7k+1 7k+2 7k+3 7k+4 7k+5 and 7k+6. Any integer can be represented in one of these forms. I hope this helps.

    • @SyberMath
      @SyberMath  ปีที่แล้ว

      -3 and 4 are congruent mod 7 because they can both be written as 7k+4. Basically they are in the same group (referring to groups I mentioned in my previous reply)

    • @srividhyamoorthy761
      @srividhyamoorthy761 ปีที่แล้ว

      @SyberMath can k be 0

    • @srividhyamoorthy761
      @srividhyamoorthy761 ปีที่แล้ว

      ​@@SyberMathcan k be 0

    • @srividhyamoorthy761
      @srividhyamoorthy761 ปีที่แล้ว

      After repeatedly watching this i am able to understand so basically if u see for eg 28 is a multiple of 7 so remainder is 0 it can be written as 28 congruent to 0 (mod7 )now if you're to add 7 to 28 it becomes 35 since we're not even into the quotient when we write in modular form 35 also is congruent to mod7 you see so the remainder is 0 so if you are to add add 7 to rhs it still should give the same remainder of -3 that's it .

  • @repsarklar9420
    @repsarklar9420 3 ปีที่แล้ว +10

    *SYBERMATH LOVERS ...*
    👇

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +3

      Thank you! 💖

    • @shreyan1362
      @shreyan1362 3 ปีที่แล้ว +1

      @@SyberMath i thought you were bringing quadratic congruence as well :|

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +1

      @@SyberMath yes!

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +1

      @@SyberMath i love you!

    • @akolangto8225
      @akolangto8225 3 ปีที่แล้ว

      Syber Math fan here from the Philippines

  • @mainaccount0411
    @mainaccount0411 11 หลายเดือนก่อน

    Sir, how do you make your videos, what software do you use to write on?

    • @SyberMath
      @SyberMath  11 หลายเดือนก่อน

      Microphone: Blue Yeti USB Microphone
      Device: iPad and apple pencil
      Apps and Web Tools: Notability, Google Docs, Canva, Desmos

  • @aashsyed1277
    @aashsyed1277 3 ปีที่แล้ว

    9.8 K SUBS LIKE REALLY!

  • @Qermaq
    @Qermaq 3 ปีที่แล้ว

    2:42 would 2 and 3 be valid answers? I agree that 11 is congruent to 5 mod 6, but mod 2 would be 1, and mod 3 would be 2, properly. I suppose one can say that 11 is congruent to 5 mod 3 in the same way you can say it's -1 mod 3, as basically in mod n we can add or subtract kn where k is an integer. Is that the right direction?

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +1

      Yes. 11≡1 (mod 2) and 5≡1 (mod 2) so they are congruent
      Similarly, 11≡2 (mod 3) and 5≡2 (mod 3) so they are congruent

  • @manavaggarwal2714
    @manavaggarwal2714 3 ปีที่แล้ว

    Are you coming up with a course on number theory or is it just a randomly posted topic🤔.

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      After the mod equation video, there's been some requests. No plan on making a course

  • @MathElite
    @MathElite 3 ปีที่แล้ว +1

    First, sooo close to 10k subscribers!
    Great video

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว

      few hours left!

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว

      HOW ARE YOU FIRST ALWAYS?

  • @MangoLassiYT
    @MangoLassiYT 11 หลายเดือนก่อน

    at 8:38 why are we squaring residues of 4 to check if sol exists or not. I did it using even no as : 2k and Odd no as :2k+1 taking modulo of these two I concluded solution doesn't exists but i don't understand how did you do it usig residues of 4

    • @SyberMath
      @SyberMath  11 หลายเดือนก่อน

      To find out which number squared leaves a remainder of 2 upon division by 4, we need to check the remainders for all possible numbers which are represented by 4 numbers: 0,1,2,3. Any number greater than these fall into one of these categories by the remainder they leave upon division by 4.

    • @MangoLassiYT
      @MangoLassiYT 11 หลายเดือนก่อน

      oh so we are taking mod first of num and then squaring the remainder and again taking mod ? @@SyberMath

  • @tushargupta986
    @tushargupta986 ปีที่แล้ว +1

    from India

  • @srijanbhowmick9570
    @srijanbhowmick9570 3 ปีที่แล้ว

    Hey SyberMath , how you doing ?

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      Pretty good! How are you? Long time no see! 😁

    • @srijanbhowmick9570
      @srijanbhowmick9570 3 ปีที่แล้ว

      @@SyberMath Yeah exams and all that stuff
      Finally I am free and can comment as much as I want
      Thank you once again for keeping me entertained with your math problems during these tough times

  • @aashsyed1277
    @aashsyed1277 3 ปีที่แล้ว +2

    DAMN YOU ARE SO AWESOME......

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว +2

      Haha, thanks!

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +1

      @@SyberMath WELCOME!

  • @tonyhaddad1394
    @tonyhaddad1394 3 ปีที่แล้ว

    We have *

    • @SyberMath
      @SyberMath  3 ปีที่แล้ว

      You have what? 😁

  • @Barikisu-f9p
    @Barikisu-f9p หลายเดือนก่อน

    I don't understand it

  • @zstar8397
    @zstar8397 ปีที่แล้ว

    Hey hope you are doing alright just I wanna say that
    GOD loved the world so much he sent his only begotten
    son Jesus to die a brutal death for us so that we can have eternal life and we can all accept this amazing gift this by simply trusting in Jesus, confessing that GOD raised him from the dead, turning away from your sins and forming a relationship with GOD...

  • @sukienve8144
    @sukienve8144 3 หลายเดือนก่อน

    im cooked

  • @DzulMuqfiz
    @DzulMuqfiz 2 หลายเดือนก่อน

    wey palotak dia payah sangat ni