Don't bother me, I am thinking. (Lambert W function)

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ม.ค. 2025

ความคิดเห็น • 121

  • @blackpenredpen
    @blackpenredpen  15 วันที่ผ่านมา +13

    How to solve a^x+bx+c=0 (NOT quadratic): th-cam.com/video/rxVK5cWLRKQ/w-d-xo.html

    • @neilg2256
      @neilg2256 15 วันที่ผ่านมา +2

      Master, could you teach us how to solve x^x^x=a?

    • @ignantxxxninja
      @ignantxxxninja 9 วันที่ผ่านมา

      that's not the minimum.
      4^1.5= 4^1 *4^(1/2)=8 where x=4 and y=1.5, then x+y=6.5

  • @AtheFbEast
    @AtheFbEast 15 วันที่ผ่านมา +127

    THE FISHH!!!!

  • @yurenchu
    @yurenchu 15 วันที่ผ่านมา +47

    Your argument for dismissing the negative value at 7:20 is wrong. Yes, W(z) can only be real when z is real and z ≥ -1/e . But the lefthandside is a function in x , and that function (and hence the value of W(z)) doesn't need to be real in order for x to be real.
    The fact of the matter is that even if -½√(ln(8)) was greater than -1/e , this negative value must have been dismissed earlier, namely at 6:30 when you've completed taking the square root:
    ln(x) * e^[½*ln(x)] = ±√(ln(8))
    Since x is real and x > 1 , the lefthandside is positive, and hence the negative value of the righthandside can be dismissed.
    In other words, the dismissal has nothing to do with properties of the Lambert W function.

  • @kasvafan
    @kasvafan วันที่ผ่านมา

    I'm watching from Turkey. You explain it very well

  • @germanbertrand8676
    @germanbertrand8676 15 วันที่ผ่านมา +29

    I have a question, does the fish have to be mischievous?

    • @dlevi67
      @dlevi67 15 วันที่ผ่านมา +6

      It has to be equally mischievous in both places.

  • @philstubblefield
    @philstubblefield 15 วันที่ผ่านมา +3

    Welcome back, BPRP! Happy New Year! 🎉

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 15 วันที่ผ่านมา +15

    4:27 oh no! the mischievous fish!

  • @Happy_Abe
    @Happy_Abe 15 วันที่ผ่านมา +8

    How does this argument get us a minimum?
    We just used critical points, it could’ve also been a maximum, we would need to say a bit more to conclude with minimum

    • @roryulmer2512
      @roryulmer2512 15 วันที่ผ่านมา +1

      Yeah I feel like it needs some sort of argument for why it’s the minimum since it’s not trivial at a glance, but maybe I’m just missing something obvious

    • @matthieudeloget8998
      @matthieudeloget8998 15 วันที่ผ่านมา +6

      The function is concave and thus there only is a global minimum

    • @yurenchu
      @yurenchu 15 วันที่ผ่านมา +2

      @@Happy_Abe 4.7694 is less than 5 , so it has to be the minimum (since f(x) = x + ln(8)/ln(x) is continuous and differentiable for x > 1 ).
      But yes, for the sake of completeness and correctness, he should have derived the second derivative f"(x) and demonstrated that its value is positive when x has the calculated value from f'(x) = 0 . It's a nice exercise for the viewer, though.
      EDIT: Oops, correction: it's not enough to remark that 4.7694 is less than 5 and that f(x) is continuous and differentiable. Obviously 4.7694 cannot be a maximum, but f"(x) could be equal to 0 in which case we're dealing with an _inflection_ point, which would mean that it's not a minimum either. Therefore, it's necessary to show that f"(x) is positive at this point.

    • @Happy_Abe
      @Happy_Abe 15 วันที่ผ่านมา

      @@yurenchuagreed but you’d have to calculate f(5) and I don’t remember that in the video

    • @yurenchu
      @yurenchu 15 วันที่ผ่านมา +2

      ​@@Happy_Abe Not x = 5 , but x+y = 5 ; which is the example in the thumbnail.

  • @preciousmathematicsfun4331
    @preciousmathematicsfun4331 15 วันที่ผ่านมา +3

    Happy new year blackpenredpen

  • @hydra-f9h
    @hydra-f9h 15 วันที่ผ่านมา +9

    2:49 But Why + x, how did he come up with that?

    • @donsetet2479
      @donsetet2479 15 วันที่ผ่านมา +9

      because f(x)=x+y, and y=ln8(lnx)^-1

    • @seydoucoulibaly4894
      @seydoucoulibaly4894 15 วันที่ผ่านมา +7

      Because our goal was to calculate x + y and he lets that f(x) = X + y and he replaces y by the value he gets before if you look at the begin

    • @hydra-f9h
      @hydra-f9h 15 วันที่ผ่านมา

      @ Makes sense

    • @PRshortts
      @PRshortts 11 วันที่ผ่านมา

      That's so simple bruhh

  • @Helloyoutubehelloyoutube
    @Helloyoutubehelloyoutube 2 วันที่ผ่านมา

    Can you do a video about the inverses of absolute values? Much appreciated.

  •  15 วันที่ผ่านมา

    Not to confuse. x^y = 8. With the same x and y, y^x would be less than 8, so would have to increase one or both of them and we would not get a minimum for x + y, since x^y must reach 8 from the statement of the problem. So y is xlnx.

  • @Vavaaan
    @Vavaaan 12 วันที่ผ่านมา +1

    I have a question at 5:59. How can you get -sqrt(8) when multiplying a square with an exponent (which is never negative)? Would it be easier to get rid of the minus in the ± before applying the Lambert W function if you said that multiplying a square and an exponent would never give you a negative result?

  • @ItsSurgeee
    @ItsSurgeee 15 วันที่ผ่านมา +5

    can someone explain what W( ) do and what's its purpose?

    • @pwmiles56
      @pwmiles56 15 วันที่ผ่านมา +1

      W(x) is the solution of W e^W = x

    • @vata7_
      @vata7_ 15 วันที่ผ่านมา +1

      W(xe^x)=x
      W(x)e^W(x)=x

    • @pwmiles56
      @pwmiles56 15 วันที่ผ่านมา +1

      It's to solve these kind of problems!

    • @limeee8775
      @limeee8775 15 วันที่ผ่านมา +3

      inverse function to f(x) = x*e^x.
      W(f(x)) = x

    • @yurenchu
      @yurenchu 15 วันที่ผ่านมา

      ​@@vata7_ You wrote "W(xe^x) = x" , but that's not necessarily true. It's rather
      W(xe^x) = c ==> ce^c = xe^x
      but c isn't necessarily equal to x (because different values of x can lead to the same value of xe^x ).
      That's why the Lambert W function has multiple _branches_ Wₖ(x) , with index k being a (positive or non-positive) integer.

  • @Kybalion.
    @Kybalion. 7 วันที่ผ่านมา

    4:02 Is it only me, but the Lambert W function seems too excessive to me. I mean, I can define a function called Lambert Ğ, which is defined as Ğ(x(lnx)^2) = x, and the minimum x value would be Ğ(ln8) in this question. I hope you understood my question, can we define infinite amounts of functions that we can use to solve irregular equations?

    • @yurenchu
      @yurenchu 6 วันที่ผ่านมา

      We already have the Lambert W function, so why would we also need your Lambert Ğ function?
      Moreover, (every branch of) the Lambert W function is well-defined over the complex plane; would that also be true for your Lambert Ğ function?
      (Note that z*e^z is a function for complex-valued z , but z*(ln(z))² isn't a function because ln(z) isn't uniquely defined for complex-valued z . For example, what values should Ğ(-1*(ln(-1))²) , Ğ(π²) and Ğ(e^[i*3π] * (i*3π)²) = Ğ(9π²) produce?)

  • @tinyeragon7132
    @tinyeragon7132 15 วันที่ผ่านมา +5

    That was a much better solution than mine haha, I decided to use lagrange multipliers.
    Constraint Function:
    g(x,y) = x^y = 8
    Optimizing Function:
    f(x,y) = x + y
    grad(g(x,y)) =
    grad(f(x,y)) =
    1 = yx^(y-1) * lambda
    1 = (x^y)(lnx) * lambda
    yx^(y-1) = (x^y)(lnx)
    xlnx = y
    then plugged into the constraint
    x^(xlnx) = 8
    x(lnx)^2 = ln8
    which is what you had and I solved it the same from there using lambert W

  • @Shad0wWarr10r
    @Shad0wWarr10r 13 วันที่ผ่านมา +1

    optimization issues like these tend to have e as answear, so i guess e+ln(8)

  • @Pranav-zm2mb
    @Pranav-zm2mb 11 วันที่ผ่านมา

    can't we write y in terms of x in the first equation and substitute x in x+y and differentiate to get possible values of the function

  • @guilhermerocha2832
    @guilhermerocha2832 15 วันที่ผ่านมา +9

    New year, new board (?)

  • @RkvdiFjdkrr
    @RkvdiFjdkrr 12 วันที่ผ่านมา

    Can we do a 100 trignometry problem would like to watch that too

  • @Dreamprism
    @Dreamprism 15 วันที่ผ่านมา

    Shouldn't the minimum value m of x+y occur when x+y=m is tangent to x^y = 8, which would be when y' = -1. Then using implicit differentiation we solve and find y = x lnx and therefore we just need to solve x^x = 8 using the super-root (or Lambert W if we want a longer-lookong answer)?

  • @wiseSYW
    @wiseSYW 15 วันที่ผ่านมา +7

    making it y=x (so that x^x = 8) actually did not give the minimum value

    • @yurenchu
      @yurenchu 15 วันที่ผ่านมา +1

      No, apparently the minimum occurs when
      x = y²/ln(8)

  • @justcommenting5117
    @justcommenting5117 13 วันที่ผ่านมา

    Is this solvable by Lagrange multipliers?

  • @ItsJayyJayy
    @ItsJayyJayy 9 วันที่ผ่านมา +3

    Hey bprp i know there might be no chance you see this, but i love your content. I think you are one of the reasons i love calculus so much. I really like three way you explain everything, I watched through the whole 100 polynomial factorization to learn factoring. I recently decided that i will be ending it all soon but, i just wanted to let you know that you are very important to me and that you are one of the greatest calculus and math teachers in the world

    • @blackpenredpen
      @blackpenredpen  7 วันที่ผ่านมา +2

      What a nice message and thank you so much for telling me! Wishing you all the best!

  • @SpaceUA1
    @SpaceUA1 15 วันที่ผ่านมา +2

    Same result I have. Nice problem

  •  15 วันที่ผ่านมา

    The problem of course is to compute the Lambert W function. Since one possibly could say that I am at least indirectly involved in the development of that I didn't mention it.

  • @Blaqjaqshellaq
    @Blaqjaqshellaq 15 วันที่ผ่านมา

    Alternatively, we can consider that x=8^(1/y) and find the minimum of y + 8^(1/y).
    If f(y)=y + 8^(1/y)=y + e^(ln8/y), then f'(y)=1 + e^(ln8/y)*-ln(8)/y^2=1 - ln(8)*8^(1/y)/y^2.
    If f'(y)=0, then ln(8)*e^(ln8/y)/y^2=1,
    therefore y^2=ln(8)*e^(ln8/y),
    therefore y^2*e^(-1/y)=W(ln8),
    therefore y*e^(-1/2*y)=[W(ln8)]^1/2,
    therefore (2*y)*e^(-1/2*y)=2*[W(ln8)]^1/2,
    therefore (1/2*y)*e^(1/2*y)=W(1/2*y)=(1/2)*W(ln8)^(-1/2),
    therefore y=(1/2)*W^(-1)[(1/2)*W(ln8)^(-1/2)]^(-1/2).
    I think.

    • @yurenchu
      @yurenchu 15 วันที่ผ่านมา

      Sorry, but your step from
      y² = ln(8) * e^(ln(8)/y)
      to
      y² * e^(-1/y) = W(ln(8))
      doesn't make sense. It seems you're also performing multiple operations in just one step, which may have led to errors of confusion.
      The proper way to apply the Lambert W function, is when you have an equation of the form
      M * e^M = C
      (where M and C can be complicated expressions).
      The step to take is then to say that M can be found by applying the Lambert W function on the expresson of the righthandside:
      M = Wₖ(C)
      I write Wₖ , because the Lambert W function has multiple branches, and it depends on the conditions which branch you want (usually W₀ and/or W₋₁ ; for example, if C is real and positive, and you want M to be real, then you take W₀).

  • @ajilesharun
    @ajilesharun 3 วันที่ผ่านมา

    maximum value of f(x) = (a2-b2)/root(a2secsquaretheta + b2cosecsquaretheta)

    • @ajilesharun
      @ajilesharun 3 วันที่ผ่านมา

      solve this

  • @deltalima6703
    @deltalima6703 15 วันที่ผ่านมา

    Why do the solutions have to be real numbers? He never said what set we are looking for solutions in, could be mod(5) or something.

  • @JosuaKrause
    @JosuaKrause 15 วันที่ผ่านมา +3

    I thought the question was: x^y=8; x+y=5 what is the minimum value of y? (solution: x≈3.22333, y≈1.77667)

    • @johangonzalez4894
      @johangonzalez4894 11 วันที่ผ่านมา +1

      How did you find it?

    • @JosuaKrause
      @JosuaKrause 11 วันที่ผ่านมา +1

      @johangonzalez4894 unfortunately Wolfram Alpha and it didn't give steps. But the values are correct to 6 decimals. A nicer formulation is: try to minimize x*y. There are only two possible pairs of x and y anyway

  • @ozi9059
    @ozi9059 14 วันที่ผ่านมา

    So what if we take logx of both sides x>1 so no provlem then we get y=logx(8) then just say y=f(x) and we want min of f(x) +x so just take the derivative and then equal to zero would it work?

    • @johangonzalez4894
      @johangonzalez4894 11 วันที่ผ่านมา +1

      That is practically the same as what he did.

    • @ozi9059
      @ozi9059 8 วันที่ผ่านมา

      I didnt watch the video but thank you

  • @kmsbean
    @kmsbean 14 วันที่ผ่านมา

    question: when we had x ln(x)^2 = ln(8), could we not have divided by ln(x) to get x ln(x) = ln(8)-ln(x)? Or is x = W [ln(8) - ln(x)] a train wreck to calculate?

    • @diegocabrales
      @diegocabrales 12 วันที่ผ่านมา +2

      That doesn't work for two reasons:
      1- Dividing by ln(x) gives xln(x) = ln(8)/ln(x) ≠ ln(8) - ln(x). You're confusing the identity ln(a/b) = ln(a) - ln(b) for a, b positive real numbers.
      2- Writing x = W[ln(8) - ln(x)] doesn't lead to anything because you haven't isolated x.

    • @johangonzalez4894
      @johangonzalez4894 11 วันที่ผ่านมา +2

      You made a mistake. ln(a)/ln(b) ≠ ln(a)-ln(b).

    • @diegocabrales
      @diegocabrales 11 วันที่ผ่านมา

      @@johangonzalez4894 I'm not the author of the comment to the video, but you're right, I've also confused the identity ln(a/b) = ln(a) - ln(b) for a, b positive real numbers. But the problem goes beyond this, writing x = W[ln(8) - ln(x)] doesn't lead to anything since x isn't isolated.

    • @johangonzalez4894
      @johangonzalez4894 11 วันที่ผ่านมา +1

      @diegocabrales I know. I was responding to the OP.

    • @kmsbean
      @kmsbean 11 วันที่ผ่านมา

      @diegocabrales I just noticed that too. I shouldn't try to do math at 1:00 AM. I'm also not super familiar with the W function. Like I see that for x ln x = p, then x = W (p), but what the heck does that mean? Does it look like y ln y = x so that y = W(x), because if it is, then there are multiple values of y for some x values (like -0.5

  • @brian554xx
    @brian554xx 15 วันที่ผ่านมา +1

    "it's a little less than 5" is a true answer but not a good answer in class.
    I don't have a feel for the W function in my head, so I could not have approximated it more closely other than by trial and error.

  • @MMthelegend-me2te
    @MMthelegend-me2te 12 วันที่ผ่านมา

    I am very confused. Isn't the goal to minimise x+y? In which case the sum of the answers given is higher than 5 (2+3=5). I hope someone can explain this to me.

    • @johangonzalez4894
      @johangonzalez4894 11 วันที่ผ่านมา +1

      The minimum in the end is ~4.7694.

  • @davidchedester8181
    @davidchedester8181 15 วันที่ผ่านมา

    Hey, bprp, here's a fun limit I want you to attempt to solve: lim x->1 x^x/x^∞

  • @Qermaq
    @Qermaq 15 วันที่ผ่านมา +4

    Other than using WA, how can you derive the value of the Lambert W function? Is there a means to do it with a lot of paper and pencils?

    • @eduardomalacarne9024
      @eduardomalacarne9024 15 วันที่ผ่านมา

      Man you could use newton method with Euler method do do a circular way tô aproximate in paper

    • @dlevi67
      @dlevi67 15 วันที่ผ่านมา

      There are series expansions for it, but they are not nice. However, given enough time, paper and pencils one can do it.

    • @Qermaq
      @Qermaq 10 วันที่ผ่านมา

      @@dlevi67 Heh. Might make a good video for someone to do....

  • @TonoySaha1020
    @TonoySaha1020 10 วันที่ผ่านมา

    Evaluate the following expression modulo :
    1 + 2^2 + 3^3 + 4^4 + \dots + 2025^{2025} \equiv x \ (\text{mod} \ 7).

  • @KaizakiArata-to6yq
    @KaizakiArata-to6yq 2 วันที่ผ่านมา

    I took maths in my bsc just because i didnt focus on it during my highschool but still i wanted to learn maths
    I still want to learn maths but i understand nothing from my textbook, i do self study 😢
    My college is distance based so there are no classes, all i have to do is study maths on my own and mostly i understand nothing
    I have tried getting TH-cam's help but there are no videos related to the content in my universities' textbooks

  • @Zopeee
    @Zopeee 15 วันที่ผ่านมา

    I got pretty close by just quessing it would be close to e+3*ln(2) which is just 0.028 or so diffrent(4,7977).

  • @maxhagenauer24
    @maxhagenauer24 15 วันที่ผ่านมา

    "If you put x to br closer and closer to 1 then the result will be bigger abd bigger"
    Not always true, if x = 8 and y = 1 then x + y = 8 + 1 = 9 but if x = 2 and y = 3 then x + y = 2 + 3 = 5 and 5 < 9.

    • @josenobi3022
      @josenobi3022 15 วันที่ผ่านมา +3

      with x already being close to 1

  • @ziplock007
    @ziplock007 15 วันที่ผ่านมา +1

    What if x is less than 1?

    • @yurenchu
      @yurenchu 15 วันที่ผ่านมา +1

      @@ziplock007 If 0 < x < 1 , then y can be as negative as you want, and hence the sum x+y can be as negative as you want; so there is no minimum.

    • @JARG-Random_Guy
      @JARG-Random_Guy 15 วันที่ผ่านมา

      Between 0 and -1/e, lambert W func. Has multiple solutions. You can see it yourself, type in Desmos x=ye^y

    • @yurenchu
      @yurenchu 15 วันที่ผ่านมา +1

      ​@JARG-Random_Guy The Lambert W function has multiple "solutions" _everywhere_ , not just between -1/e an 0 . However, W(z) has two _real_ outcomes for real variable z between -1/e and 0 , namely W₀(z) and W₋₁(z) (which are respectively the 0'th branch and the (-1)'th branch of the Lambert W function; and both are then negative reals).
      But in this problem, the Lambert W function is applied on the value of ½√(ln(8)) , not on x ; so the domain of x isn't relevant to the behavior of the Lambert W function. In other words: there is no "x" on which the Lambert W function is applied.

  • @josephcote6120
    @josephcote6120 11 วันที่ผ่านมา

    I just have a bad reaction to the W function. It's just not a very satisfying solution to a problem. If you're going to iteratively compute a numeric answer, just start from the original problem. Yeah, that would be ugly for this particular problem, but still.

  • @tohirikagawa2919
    @tohirikagawa2919 15 วันที่ผ่านมา

    Helpful & Give me more math experiences...

  • @jimmyknuuttila3681
    @jimmyknuuttila3681 15 วันที่ผ่านมา

    New year new marker??

  • @Chameleonred5
    @Chameleonred5 15 วันที่ผ่านมา +1

    I mean, if x and y don't have to be rational... or whole... or positive...

  • @death_to_mpla1958
    @death_to_mpla1958 15 วันที่ผ่านมา

    W video with the W function

  • @yurenchu
    @yurenchu 15 วันที่ผ่านมา +1

    Why are my comments in this comment section being deleted? 😠

  • @fastneuro9829
    @fastneuro9829 13 วันที่ผ่านมา

    Lambert function does not give one solution. It gives 2 in some cases. Can give even more in some very specific cases

    • @MichaelRothwell1
      @MichaelRothwell1 9 วันที่ผ่านมา

      Yes, but for a non-negative argument (as is the case here) you just get one value, found by applying W₀. You would get a 2nd real value for an argument strictly between -1/e and 0, found by applying W₋₁.

  •  15 วันที่ผ่านมา

    The remark that y = xlnx is for the case of minimum or maximum depending on the value. Since it here is less than 2e it is a minimum. Of course one can get an arbitrarily large value without restrictions. But the sum 4.769378247 gives x = 2.4926758599...because it is x + xlnx.

  • @yaleng4597
    @yaleng4597 15 วันที่ผ่านมา

    lagrange multiplier in play

  • @donwald3436
    @donwald3436 15 วันที่ผ่านมา +2

    Why is everything productlog and why am I watching this at 3am lol. Are there other cool functions nobody has heard of?

    • @yurenchu
      @yurenchu 15 วันที่ผ่านมา +1

      Ackermann

    • @dlevi67
      @dlevi67 15 วันที่ผ่านมา +1

      @@yurenchu Bessel (just because the name begins with B)

  • @scottleung9587
    @scottleung9587 15 วันที่ผ่านมา

    Nice!

  • @attheend6284
    @attheend6284 15 วันที่ผ่านมา +12

    Why go through the complex solution while we have simple one!!

    • @HenriqueCaldeira-h5l
      @HenriqueCaldeira-h5l 15 วันที่ผ่านมา +6

      Complex analysis? I'm sorry, I only do simple analysis 😈

    • @dolphin-314
      @dolphin-314 15 วันที่ผ่านมา

      find the "min"

    • @HenriqueCaldeira-h5l
      @HenriqueCaldeira-h5l 15 วันที่ผ่านมา +3

      @@dolphin-314 Big maths wants you to think there is no min in a subset of C, open your eyes sheeple

  • @TaiserBinJafor
    @TaiserBinJafor 15 วันที่ผ่านมา

    WHAT THE FISH?!

  • @TheNumberblock3.275
    @TheNumberblock3.275 15 วันที่ผ่านมา

    4.7694

  • @sameersd_real
    @sameersd_real 21 ชั่วโมงที่ผ่านมา

    Integrate (x^x)(x^(x^x))(1/x+ln(x)+(ln(x))^2)

  • @davidbrisbane7206
    @davidbrisbane7206 15 วันที่ผ่านมา +1

    These type of problems are always fishy.

  • @BloxiusLuani
    @BloxiusLuani 14 วันที่ผ่านมา +1

    can you do the arctangent of i

    • @yurenchu
      @yurenchu 14 วันที่ผ่านมา +1

      For any constant c ,
      tan(c + i*∞) = i
      tan(c - i*∞) = -i
      Verify this by using
      tan(z) = sin(z)/cos(z)
      sin(z) = -i(e^(iz) - e^(-iz))/2
      cos(z) = (e^(iz) + e^(-iz))/2
      ==>
      atan(i) = c + i*∞
      atan(-i) = c - i*∞

  • @abdulrahmanabukharma7969
    @abdulrahmanabukharma7969 13 วันที่ผ่านมา +2

    Unrelated: th-cam.com/video/uqwC41RDPyg/w-d-xo.html

  • @Tripleye
    @Tripleye 15 วันที่ผ่านมา

    hi guy

  • @ankhtsoozerdenebileg2977
    @ankhtsoozerdenebileg2977 15 วันที่ผ่านมา

    nice222

  • @matei_woold_wewu
    @matei_woold_wewu 13 วันที่ผ่านมา

    “Fish” variable in big 2025 💀

  • @rattyoman
    @rattyoman 13 วันที่ผ่านมา +1

    the fishe is everyone's favourite anime character