Ultimate Inverse Laplace Transform Study Guide

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 283

  • @blackpenredpen
    @blackpenredpen  8 หลายเดือนก่อน +1

    Laplace Transform Ultimate Study Guide: th-cam.com/video/ftnpM_RO0Jc/w-d-xo.html

    • @MuhammedmehdiTaqsh
      @MuhammedmehdiTaqsh 6 หลายเดือนก่อน

      Sir can you show us how we can calculate inverse Laplace transform by using integral relation
      L^-1=1/2πi*integral(f(s).e^s*t.ds)

  • @frozenmoon998
    @frozenmoon998 4 ปีที่แล้ว +130

    These marathon videos are becoming my most favourite thing to watch!

  • @MathswithMuneer
    @MathswithMuneer 4 ปีที่แล้ว +36

    Hello from a math teacher in Pakistan. I am glad to see teachers taking initiatives and helping students in their problems. I am positive our videos are a great source of help for them. Good work

  • @drpeyam
    @drpeyam 4 ปีที่แล้ว +113

    At first I thought you were gonna do the Laplace video but in reverse 😂

    • @blackpenredpen
      @blackpenredpen  4 ปีที่แล้ว +25

      I should have just done that...

    • @jacobharris5894
      @jacobharris5894 2 ปีที่แล้ว +5

      That would be a meta video lol.

  • @vibhupandya6103
    @vibhupandya6103 4 ปีที่แล้ว +24

    The hell dude. I just started the original laplace marathon. And ALREADY?

  • @Giovanni12332
    @Giovanni12332 2 ปีที่แล้ว +4

    These marathons are great, your effort with the worksheet, timestamps, and everything else is greatly appreciated. Helped me out so much.

  • @OwelleUwaleke
    @OwelleUwaleke 6 หลายเดือนก่อน

    The beauty of all these videos is that you can watch again, again and again until you come to grasp the concept

  • @blackpenredpen
    @blackpenredpen  4 ปีที่แล้ว +58

    All the s's are in red.
    How do you distinguish your s and your 5?

    • @lopkobor6916
      @lopkobor6916 4 ปีที่แล้ว +12

      blackpenredpen Can you do Fourier Transforms?

    • @JB-ym4up
      @JB-ym4up 4 ปีที่แล้ว +6

      Not without a green pen.

    • @jagatiello6900
      @jagatiello6900 4 ปีที่แล้ว +7

      Haha Steve, i had exact the same "trouble" distinguishing between the 5 and the s back in the university...my workaround method was writing the s with some horns added in both its ends, you can't imagine how fancy they look...

    • @blackpenredpen
      @blackpenredpen  4 ปีที่แล้ว +3

      Can you tweet me a picture of how it looks like?

    • @jagatiello6900
      @jagatiello6900 4 ปีที่แล้ว +2

      @@blackpenredpen don't have tw account, sent u to ur gmail instead

  • @tombartimtim1725
    @tombartimtim1725 4 ปีที่แล้ว +38

    It would be nice a double and triple integrals marathon!!

    • @jacobharris5894
      @jacobharris5894 2 ปีที่แล้ว

      I second this. Although maybe like 50 instead of 100.

    • @thecritiquer9407
      @thecritiquer9407 2 ปีที่แล้ว +2

      also a fourier transformation series marathon.

    • @ContentMIN
      @ContentMIN 11 หลายเดือนก่อน

      yeah, fourier series marathon@@thecritiquer9407

  • @carultch
    @carultch 10 หลายเดือนก่อน

    Another way to solve the convolution of multiple trig functions:
    Based on the degree in the denominator for (s^2 + w^2)^n, the value of (n - 1) tells you how many times you'll eventually multiply trig by t. So you form a linear combination of t^k*sin(w*t) and t^k*cos(w*t), where w is the angular frequency, and k is a power that builds from 0 to (n-1). You then find corresponding Laplace transforms to each of these terms, and add up a linear combination with unknown coefficients, to equate to the original transform.
    Use the function parity property of convolution, you can eliminate half of the terms, and have half as many unknowns to solve for.
    f_odd(t) conv g_odd(t) = odd function
    f_even(t) conv g_even(t) = odd function
    f_odd(t) conv g_even(t) = even function
    If expecting odd functions, this means you can eliminate all t^even * cos(w*t) terms and t^odd * sin(w*t) terms. Vice versa, if you are expecting even functions. Then you proceed with solving for the unknown coefficients.

  • @joshuaokeke2726
    @joshuaokeke2726 4 ปีที่แล้ว +12

    Finally!!!!!! Someone that understands, S and 5 can be really confusing especially if your handwriting is as bad as mine

    • @FaranAiki
      @FaranAiki 4 ปีที่แล้ว

      Yeah, but why we use 's' not 'f' or 'g'?

    • @MrPanzerTanzer
      @MrPanzerTanzer 4 ปีที่แล้ว +1

      @@FaranAiki Because the original inventor used s and f and g are reserved for functions.

    • @quantumsoul3495
      @quantumsoul3495 4 ปีที่แล้ว +2

      you can use cursive s, you will no longer confuse them

  • @abdulmajeedghareeb
    @abdulmajeedghareeb 9 หลายเดือนก่อน

    I have just found ur channel today and hands down ur already one of my favorite teachers on youtube. I wish i knew about u earlier. Ive been studying for some hours now and this is something i didnt do in a very long time. Your videos are very informative and very entertaining.

  • @holyshit922
    @holyshit922 4 ปีที่แล้ว +1

    19
    Here we can be tricky and build difference of squares from linear factor of denominator
    Then we will get constant term if we combine difference of squares with the other factor of denominator
    We will get
    13=(s^2+9)-(s+2)(s-2)
    If we replace numerator by 1/13((s^2+9)-(s+2)(s-2)) we will have nice cancelling
    20
    16=s^4-(s^2-4)(s^2+4)
    and we have nice cancelling
    If we know hyperbolic functions we dont need partial fractions

  • @hevanderdacosta3211
    @hevanderdacosta3211 4 ปีที่แล้ว +62

    Now we just need a fourier and inverse fourier transform marathon.

  • @lindsaywaterman2010
    @lindsaywaterman2010 4 ปีที่แล้ว +4

    This expression could have been written as 1/8[1/(s^2-4 -2) -1/(s^2+4)] and then 1/16[2/(s^2-4 -2) -2/(s^2+4)]. The Laplace Transform would , therefore be 1/16[Sinh(2t) -Sin(2t)], which is what Black Pen Red Pen got but in a convoluted way.

  • @Shailendra2819962
    @Shailendra2819962 4 ปีที่แล้ว +62

    “Is this heaven?”
    - “No this is a Inverse Laplace marathon”
    “Hm, fair enough”

  • @ChanceGrey-t5v
    @ChanceGrey-t5v 4 หลายเดือนก่อน

    Thank you thank you thank you! I would be lost in college without your videos!

  • @Amine-gz7gq
    @Amine-gz7gq 3 หลายเดือนก่อน

    I've just finished the Laplace Transform Ultimate Study Guide video now I'm going to start watching this one, it's going to take me a while like the other one because I have other things to do.

  • @thevenin26
    @thevenin26 4 ปีที่แล้ว +165

    Can't I just play the other Laplace video in reverse? :-)

    • @blackpenredpen
      @blackpenredpen  4 ปีที่แล้ว +25

      Hahaha that should work too!

    • @markjosephaala2254
      @markjosephaala2254 2 ปีที่แล้ว +1

      😂😂 witty

    • @sgems13
      @sgems13 2 ปีที่แล้ว

      It would sound wird

    • @lih3391
      @lih3391 2 ปีที่แล้ว

      @@sgems13 thats the last of their worries lol

  • @The1RandomFool
    @The1RandomFool 2 ปีที่แล้ว +2

    Coming back and re-watching this video a couple years later, it occurs to me that on question 20 and other hard partial fraction decomposition problems the residue theorem from complex analysis can be used to help with it. You'd just have to calculate a couple derivatives for building up the powers of s, and the rest is fine.

  • @XgamersXdimensions
    @XgamersXdimensions 4 ปีที่แล้ว +3

    Maybe next could be some linear algebra videos? Ideas could be marathon on: finding Inverses, Eigenvectors, eigenvalues of matrices?

  • @anarbay24
    @anarbay24 4 ปีที่แล้ว +14

    I am taking differential equations in MIT and literally, you are saving my time with excellent exercises. Our book is just awful. Just imagine, some of your exercises appeared in my midterm exam

  • @kirbo722
    @kirbo722 7 หลายเดือนก่อน

    I, once again, deeply thank you bprp!
    This was EXTREMELY helpful!

  • @federicopagano6590
    @federicopagano6590 2 ปีที่แล้ว +1

    Number 16 no need to do that to find C and D
    You just have to multiply bt (s^2+4) both sides and then evaluate at s=2i
    It will follow
    -1/8 =C(2i) +D
    Immediately D=-1/8 and C=0
    1/(s-2)(s+2)=1/(s^-4) evaluated at s=2i equals -1/8

  • @luisgarza4244
    @luisgarza4244 3 ปีที่แล้ว +1

    Love the way you teach. Fast but informative.

  • @jonacasals5
    @jonacasals5 4 ปีที่แล้ว +1

    I respect you so much. Right now I cant understand this topic, but I will comeback.

  • @igarciaasua9
    @igarciaasua9 4 ปีที่แล้ว +3

    Do you guys know a marathon video of differential equations? I have to retake them for a subject and these videos are very useful

  • @The1RandomFool
    @The1RandomFool 4 ปีที่แล้ว +5

    I really like these marathons.

  • @farhanaferdous3581
    @farhanaferdous3581 4 ปีที่แล้ว

    Thanks blackpenredpen....take care and best wishes from Bangladesh 🇧🇩🇧🇩🇧🇩

  • @Zeusbeer
    @Zeusbeer 2 ปีที่แล้ว

    For question 12 you can really easily simplify the partial fractions by letting some w = s^2 and then doing the partial fractions on w, and then later substituting s back in.
    edit: A simular trick can be used for Q16, where you can split up (s^4-16) into (s^2+4)(s^2-4) and again let w = s^2, do the partial fraction, reverse into the s world, then you can simplify it all down into 1/16(sinh(t) - sin(t))

  • @alperyasin710
    @alperyasin710 4 ปีที่แล้ว +1

    Sir i appreciate you. You are the best!
    Greetings from Turkey.

  • @notpistooo
    @notpistooo 10 หลายเดือนก่อน

    Hii, thank you bprp for these marathon videos. It is very helpful even after 3 years and it will stay helpful.
    I would like to point that i couldn't open the file, which is not a big problem because we have the functions in the video and the description, but still it would be nicer to have them printed. Thank uu again

  • @Bayonettamachinekill
    @Bayonettamachinekill 2 ปีที่แล้ว

    incredible was able to find error in the work we did thanks so much.

  • @snipergranola6359
    @snipergranola6359 4 ปีที่แล้ว +2

    Solution of partial differential eq using Laplace and Fourier transtorm

  • @啟瑞-f4n
    @啟瑞-f4n 10 หลายเดือนก่อน

    You are a great teacher!❤❤❤

  • @holyshit922
    @holyshit922 3 ปีที่แล้ว +1

    Residues are alternative way to partial fraction decomposition
    In fact complex partial fractions decomposition works better
    Residues are more comfortable also for inverse Z transform

  • @Vladimir064Mr
    @Vladimir064Mr 4 ปีที่แล้ว

    Thank you, this quarantine has led me to study differential equations on my own, thanks from Honduras

  • @banderfargoyl
    @banderfargoyl 4 ปีที่แล้ว +5

    An inverse Laplace marathon? Man, there must be a lock-down! 😂

  • @luisf6060
    @luisf6060 2 ปีที่แล้ว

    Example (16) A=1/4 ; B=-1/4 ; C=0 ; D=-1 . Thanks !!!

  • @guiencarnacao6918
    @guiencarnacao6918 2 ปีที่แล้ว +1

    You are the best, thank you so much :D

  • @bassjunias439
    @bassjunias439 ปีที่แล้ว +1

    Video still useful today. Thanks teacher!
    But @blackpenredpen Can you also do fourier transform please?

  • @eswyatt
    @eswyatt 3 ปีที่แล้ว +1

    A higher order differential equations marathon would make a complete set!

  • @jarikosonen4079
    @jarikosonen4079 4 ปีที่แล้ว +1

    It looks like the (6) case the cos(t-π/2) can be also sin(t)...
    In the (7) case cos(t)-sin(t) can be sqrt(2)*sin(π/4-t)...
    This should be possibly simplified in the t-domain.
    (10) delta(t-a) correct, but maybe then mistake before the inverse laplace if this is result. The delta is more practical in s-domain than in t-domain...
    (26) Try inverse laplace of s^2/(s^2+a^2)... How to make this?
    Why result is different for L^-1{1-a^2/(s^2+a^2)} versus L^-1{s/(s^2+i×a)} ∗ L^-1{s/(s^2-i×a)} (∗ = convolution)?
    Can this prove that convolution theorem and other inverse laplace can differ? Is correct answer -a×sin(a×t) ?
    Maybe is it possible to reconfigure the transformation to present the frequencies reference point at t=0- (zero minus) so that resulted delta(0) would be delta(0-) and then by using laplace validity for t>=0 removing this delta-function?

  • @mahibulhaque5952
    @mahibulhaque5952 4 ปีที่แล้ว

    You are great I like this channel more than other ...

  • @paologrisanti7865
    @paologrisanti7865 4 ปีที่แล้ว

    I was additcted to marathon's race (done 3) now I am addict to your marathon 👍
    From Italy with love!

  • @Subhajit03-n6j
    @Subhajit03-n6j 4 ปีที่แล้ว +1

    Exciting!!

  • @downtwojames5441
    @downtwojames5441 4 ปีที่แล้ว

    You're a champ! This helped a ton. Thanks!

  • @WilsonWolAguekNgot
    @WilsonWolAguekNgot 4 ปีที่แล้ว

    My favorite teacher

  • @muhamadfaisalbinrachmanmoe5228
    @muhamadfaisalbinrachmanmoe5228 10 หลายเดือนก่อน

    I love u sirrrrrr❤❤i love the way u teach us.its easy to understand

  • @QuranReact1
    @QuranReact1 ปีที่แล้ว +1

    Well done !! I gotta ask a question : for Q15, F(S) doesn't converge to 0 when s goes to infinity, therefore we can't use differentiation, right ?

    • @QuranReact1
      @QuranReact1 ปีที่แล้ว +1

      oh srry, right ln(1)=0. My bad.

  • @chris-hj2qd
    @chris-hj2qd 2 ปีที่แล้ว

    Awesome working through the struggle

  • @torcida214
    @torcida214 2 ปีที่แล้ว +3

    hello, thanks for the videos! Did you do any via the Fourier Transform? Something similar to the Laplace?
    thank you

  • @arberithaqi
    @arberithaqi 4 ปีที่แล้ว +1

    Next Video: Differential Equation 2nd Order (btw. keep up with the great content, love it!)

  • @milagros070728
    @milagros070728 2 ปีที่แล้ว

    THANK YOU SO MUCH

  • @laurentwatteau8835
    @laurentwatteau8835 2 ปีที่แล้ว +1

    For #16, the result could have been written as (1/16)[sinh(2t)-sin(2t)], which makes more sense to me.

  • @wryanihad
    @wryanihad หลายเดือนก่อน

    In minite 48 your solution Is correct
    But i solve it by adding (s²+1-s²) twic

  • @rotomflux
    @rotomflux 4 ปีที่แล้ว

    I love the beginning, I also mess up my 5's and s's

  • @gradientattack
    @gradientattack 4 ปีที่แล้ว +2

    Thank you Mathematic Marathons GOD!!!, we appreciate your big brain, but there are a topic, Limits, can you give us a marathon about it? (I'm learn English, I speak spanish )

  • @lawandeconomics1
    @lawandeconomics1 2 ปีที่แล้ว +2

    Your video was badly needed! Most books and sources just blow through one example…forgetting that perfect practice makes perfect! Thanks!

  • @piyushgupta1811
    @piyushgupta1811 2 ปีที่แล้ว

    Thanks!

  • @_witeK
    @_witeK 4 ปีที่แล้ว +1

    *Will you make a video with 100 limits ?*

  • @dishant4222
    @dishant4222 4 ปีที่แล้ว

    Amazing & thanks

  • @sinr2688
    @sinr2688 4 ปีที่แล้ว +1

    this is a good video for me to practice my engineering math :))

  • @comingshoon2717
    @comingshoon2717 3 ปีที่แล้ว

    aqui, en pleno verano practicando, para no olvidarse de esto... un cracj bprp... saludos :)

  • @hari8568
    @hari8568 4 ปีที่แล้ว +1

    Hey can u do a marathon on z transform and inverse z transform

  • @Marcox385
    @Marcox385 4 ปีที่แล้ว +42

    Getting bored with the quarantine bprp? Ye, me neither

    • @lopkobor6916
      @lopkobor6916 4 ปีที่แล้ว +3

      Everyone's saying that they're all bored while we're just chilling at home doing maths

    • @aleks456
      @aleks456 3 ปีที่แล้ว

      can't imagine that this was posted 9 months ago now..

    • @Marcox385
      @Marcox385 3 ปีที่แล้ว +1

      @@aleks456 I can't handle this anymore, I've passed calc 2 and 3 since then but this is enough

    • @aleks456
      @aleks456 3 ปีที่แล้ว +1

      @@Marcox385 Same bro. Let's just hold on and wait for this to finish!

  • @anirudhnarasimhan7307
    @anirudhnarasimhan7307 4 ปีที่แล้ว

    Thanks for keeping my quarantine filled. Love from India😍

  • @thomasfranzstockhammer7846
    @thomasfranzstockhammer7846 2 ปีที่แล้ว +1

    Lg /amazing video's

  • @ssdd9911
    @ssdd9911 4 ปีที่แล้ว

    1:08:43 i realised it is possible to use cover up by substituting s^2=u
    and A and C is automatically 0

  • @julianmldc
    @julianmldc 4 ปีที่แล้ว

    AMAZING AS ALWAYS

    • @MathswithMuneer
      @MathswithMuneer 4 ปีที่แล้ว

      José Julián Maldonado Camacho indeed

  • @koffisamuel9517
    @koffisamuel9517 ปีที่แล้ว

    thank you so much professor can you do the same with fourier transform ?please

  • @خلفابراهيم-ض5س
    @خلفابراهيم-ض5س 4 ปีที่แล้ว +3

    Thank you very much Steve...continuous..we are all love you ❤❤❤

  • @josammarenye4021
    @josammarenye4021 2 ปีที่แล้ว

    I feel so unlucky not being your student. Your teaching is eloquent ☺️

  • @blaugios
    @blaugios ปีที่แล้ว

    According to f(t-a)*u(t-a) = iLapace{e^(-as)F(s)} , for a=0, all inverse Laplace transforms should be multiplied by u(t), am I right?

  • @1ereliguejeunessetennisdet708
    @1ereliguejeunessetennisdet708 4 ปีที่แล้ว +2

    你回来了曹老师👍

  • @aymen_sahnoun
    @aymen_sahnoun 4 ปีที่แล้ว +2

    thanks ... is there a marathon for fourier ?

    • @blackpenredpen
      @blackpenredpen  4 ปีที่แล้ว +1

      We have to call up dr. Peyam for this! Lol

    • @aymen_sahnoun
      @aymen_sahnoun 4 ปีที่แล้ว

      @@blackpenredpen is it really harder than Laplace and it's inverse and power series and the all mighty integral Marathon !??

  • @kulvirsharma6940
    @kulvirsharma6940 4 ปีที่แล้ว

    Good morning sir

  • @blackscreen4033
    @blackscreen4033 4 ปีที่แล้ว +1

    You got some stamina!

  • @charlesk5138
    @charlesk5138 3 ปีที่แล้ว

    I love you. thank you.

  • @jaredjones6570
    @jaredjones6570 4 ปีที่แล้ว

    2:02:17 and 2:02:31 reveal that an infinitesimal amount of exhaustion has affected the dual-pen-wielding Jedi master.

  • @williamfernandez4117
    @williamfernandez4117 2 ปีที่แล้ว

    OMG Love this video

  • @moisessalazar4432
    @moisessalazar4432 3 ปีที่แล้ว

    Can you do video about the Fourier transform?

  • @jhoelwencebayot8899
    @jhoelwencebayot8899 4 ปีที่แล้ว

    May I ask you if you can make physics video? Thanks a lot

  • @biscet6287
    @biscet6287 4 ปีที่แล้ว +1

    Marathon for integration with residues?

  • @sarsoor1429
    @sarsoor1429 2 ปีที่แล้ว +1

    That face expression switch at 34:45

  • @TheTalmon18
    @TheTalmon18 4 ปีที่แล้ว

    Dang I havent done laplace transforms since ODEs in my first year of uni. I graduated with an applied math bachelors back in 2016 but never had to do these again haha. Ive used the laplacian in PDEs many times but never these again😅. Blast from the past! Thanks for the video! Was able to do these since you mentioned LT is linear and with your note of what the laplace transform is its easy to go backwards
    Thank you!! Idk if Ill ever use this again (even in my masters when I start it) but it was fun to watch haha

  • @stevenglowacki8576
    @stevenglowacki8576 2 ปีที่แล้ว

    Whenever I got a problem that stated "s" as a variable, my first line on my answer was "Let s = t" or something like that. S looks way too similar to 5 to be used a variable name. For the same reason, I have crossed hand-written every z for a very long time so that they don't look like 2.

    • @carultch
      @carultch ปีที่แล้ว

      Write a cursive s, to tell it apart from a 5.

  • @aymanalgeria7302
    @aymanalgeria7302 4 ปีที่แล้ว +1

    That was too much fun . Isn't it

  • @ahmedamin1557
    @ahmedamin1557 4 ปีที่แล้ว

    Mr.bprb thanks for your effort.....I wanna tell you that you haven't put negative sign before the term tsin(4t) in no.22

  • @rodwayworkor9202
    @rodwayworkor9202 4 ปีที่แล้ว +2

    Next up : W Lambert Marathon

  • @viniciusps01
    @viniciusps01 3 ปีที่แล้ว

    Great!

  • @raviRavi-jz6sk
    @raviRavi-jz6sk 3 ปีที่แล้ว

    Sir super vedio I am waiting

  • @chickitychina100
    @chickitychina100 4 ปีที่แล้ว

    Question: If there is 7.8 billion people on earth and we are all suppose to keep a 6 foot distance between ourselves to prevent the spread Cov-19, how much land do we need? It seems if we were to use a simple square grid we would need trillions of square miles. What would be the most efficient layout and is there enough land?

    • @carultch
      @carultch 10 หลายเดือนก่อน

      The most efficient layout would be a hexagonal close packing. Each person gets a hexagon to themselves, with a cross-flats distance (like the way you measure a wrench size) of 6 ft. To calculate the cross-points distance on a hexagon, given the cross-flats distance, you multiply by 2/sqrt(3). Let F equal the cross-flats distance, and P equal the cross-points distance.
      Such a hexagon is equal in area to 6 equilateral triangles of side length P/2, which each have an altitude of F/2. So the area of each triangle is: 1/8*P*F, and the hexagon area is 3/4*P*F. Plug in P=F*2/sqrt(3), and simplify, and we get:
      A_1hex = sqrt(3)/2*F^2
      This means we'd need 31.177 square feet for each person.
      Multiply by 7.8 billion, and we get 2.43*10^11 ft^2
      Divide by (5280 ft/mi)^2, and we get 8773 square miles required.

    • @chickitychina100
      @chickitychina100 10 หลายเดือนก่อน

      So is the hexagon the most efficient way because it tessalates? @@carultch

  • @saisrirajnallam
    @saisrirajnallam 4 ปีที่แล้ว +1

    sir thank you very much for your greatest efforts sir.........❤❤❤

  • @akhileshray3478
    @akhileshray3478 2 ปีที่แล้ว

    I am using this marathon for exam preparation 😂 thanks btw 😁👍

  • @ianmi4i727
    @ianmi4i727 2 ปีที่แล้ว

    Wonderful 😊

  • @bludeat7398
    @bludeat7398 4 ปีที่แล้ว +1

    on problem 8... why not add and substract s^2 on top?

  • @paulhaso
    @paulhaso 4 ปีที่แล้ว

    Do you have a whiteboard at your house? Great effort, I really do think you must have several clones who you swap in every 10min. Keep up the quality content!

  • @joelmilburn6146
    @joelmilburn6146 2 ปีที่แล้ว +1

    I wonder how you derived the creativity to decide you YT name?!

    • @blackpenredpen
      @blackpenredpen  2 ปีที่แล้ว +1

      Excellent question and barely no one asked.
      My first thing was NOT to have “math” in my channel name. Then I wanted to say something to intrigue other. Then I also wanted to point out the obvious thing that made me stand out. I think these were the things I was thinking about 10 years ago.

  • @froilanemeliano6551
    @froilanemeliano6551 4 ปีที่แล้ว

    i would totally give a like to tell u how helpful u are ♥️