Finding the domain of x^x

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ธ.ค. 2024

ความคิดเห็น • 153

  • @blackpenredpen
    @blackpenredpen  หลายเดือนก่อน +61

    If you want a super challenge, then find the real range of x^x

    • @Dravignor
      @Dravignor หลายเดือนก่อน +2

      x^x ≠ 0 ⟹ x^x > 0
      Show that x^x is not bounded above
      Suppose BWOC x^x is bounded above, that is, there exists M > 0 s.t. x^x ≤ M for all x > 0
      By the property that x^x is continuous (Proof is left as an exercise) ⟹ lim(x^x, x→∞) ≠ ∞ which is false (Again, skipping some stuff here that the reader may complete)
      Therefore x^x is not bounded
      Finding the minimum of x^x
      min(x^x) = y ⟹ d[x^x]/dx = 0
      d[e^(xlnx)]/dx = 0
      x^x(ln(x) + 1) = 0
      ⟹ x^x = 0 (No solutions)
      Or ln(x) + 1 = 0
      ln(x) = -1
      e^(ln(x)) = e^(-1)
      x = 1/e
      ⟹ y = (1/e)^(1/e) = 1/e^(1/e)
      ∴ x^x ∈ [1/e^(1/e), ∞) ∪ {(-1)^n/n^n | n ∈ ℤ⁺}
      Edit: Forgot that negative integers still work with the real x^x

    • @lotaniq4449
      @lotaniq4449 หลายเดือนก่อน +4

      @@Dravignor -1^-1=-1.

    • @mohannad_139
      @mohannad_139 หลายเดือนก่อน +2

      ​@@Dravignor
      That's only for the positive part, we know f(-1) = -1, so -1 ∈ range(f(x))
      The real challenge is to find the range when x is negative

    • @braisrg5
      @braisrg5 หลายเดือนก่อน +5

      Okay, so... If you insert a negative number into the function x^x, you end up with (-k)^(-k) which is 1/(-k)^(k), where k>0.
      So, if -k is -m/(2n-1), you would have
      1/(-m/(2n-1))^(m/(2n-1))
      Observe that, if you have an odd root 2n-1 of a number -k (where k>0), then:
      (2n-1)\/(-k) it's just -(2n-1)\/(k) (we can take the minus sign outside of the root).
      Then,
      1/(-m/(2n-1))^(m/(2n-1)) = -1/(m/(2n-1))^(m/(2n-1)).
      We can interpret that function as a function of x, where
      g(x) = -1/x^x = - x^(-x).
      If we change the sign of the negative domain of x^x, it has to be a subset of the positive domain of g(x), so we can study the function g and interpret from there.
      Let's derive g:
      g = - x^(-x)
      -g = x^(-x)
      ln(-g) = -x*ln(x)
      If we differentiate:
      -g'/-g = -1 - ln(x)
      g'(x) = - x^(-x) * (-1 - ln(x))
      We can find the critical points:
      -1 - ln(x) = 0 => ln(x) = -1 => x = 1/e
      We can easily check that it's a minimum, with value -1.444667861...
      For any odd number 2n-1, we can find a number m such that m/(2n-1) < 1/e < (m+1)/(2n-1), and we can make the number 2n-1 as big as we want, essentially getting as close as we want to the value of 1/e (without ever being it).
      So, my conclusion is that the inf(x^x) is the value we get with 1/e in function g and so the range of x^x is
      (-1.444667861, +∞).
      We would have to check if we can get all values in that range. My intuition says no, but I don't have a clue on how to prove it.
      I hope that what I wrote was easy to follow!!

    • @mohannad_139
      @mohannad_139 หลายเดือนก่อน

      @braisrg5 great work, but you should exclude 0 from the range

  • @cdkw2
    @cdkw2 หลายเดือนก่อน +119

    We surely need a 10 part series on this for the full domain

    • @robertpearce8394
      @robertpearce8394 หลายเดือนก่อน

      Major motion picture.

    • @cdkw2
      @cdkw2 หลายเดือนก่อน

      @@robertpearce8394 yeah

    • @mreverything7056
      @mreverything7056 หลายเดือนก่อน +4

      We’ll need an infinite series that (hopefully) converges!

    • @cdkw2
      @cdkw2 หลายเดือนก่อน

      @@mreverything7056 now that is a smart reply!

    • @cdkw2
      @cdkw2 หลายเดือนก่อน

      @@mreverything7056 best reply lol!

  • @johnchessant3012
    @johnchessant3012 หลายเดือนก่อน +33

    This is why I like complex analysis. The domain of z^z is all of C, except for a branch point at z=0.

    • @darksecret965
      @darksecret965 หลายเดือนก่อน

      It has complete algebraic closure

    • @dadoo6912
      @dadoo6912 หลายเดือนก่อน

      not that it fixes any problems, it just creates more. equation like f(z)^g(z) = h(z) doesn't even make sense on a complex plane, as you have possibly infinite number of values on the left hand side for each given z and only one value on the right hand side

  • @romanbykov5922
    @romanbykov5922 หลายเดือนก่อน +22

    My brain relaxes when I watch your videos. Come back soon.

  • @brian554xx
    @brian554xx หลายเดือนก่อน +15

    MUCH smoother this time! And even correctly spelled 'video'.
    I bet you can make it more rigorous, proving that this gets every possible x and does not include any false input or overlap. I mean, we can see it intuitively; you nailed this answer. But mathematicians are often pedantic. Especially math teachers are unwilling to accept "it's intuitively obvious."

  • @Bodyknock
    @Bodyknock หลายเดือนก่อน +8

    More or less whether or not 0 gets included in the Naturals depends on the context of the author. Authors who are used to dealing with the Naturals being derived from set theory as the set of finite cardinalities include 0 because that’s the size of the Empty Set. On the flip side, if you’re used to coming at the Naturals from factorization and Number Theory you’ll often exclude 0 because it can create oddball corner cases in theorems where you have to keep treating 0 as a special case.
    This also means that different countries or schools teach new students about the Naturals differently. That’s why there are comments in this video saying “my country includes 0” and “in my country I learned it doesn’t include 0”. And thus there is no generally accepted standard, your best bet is when you’re doing math involving “the Naturals” to define them in the beginning for the reader so they know whether you’re including 0 or not.

  • @cdkw8254
    @cdkw8254 หลายเดือนก่อน +11

    The series is forming

  • @euloge996
    @euloge996 หลายเดือนก่อน +9

    Again, it's always "what is the domain of x^x?" And never "how is the domain of x^x"😢

  • @soez_strg6166
    @soez_strg6166 หลายเดือนก่อน +9

    Domain expansion!

    • @SmileHIHI6
      @SmileHIHI6 หลายเดือนก่อน

      ryōiki tenkai

  • @Bodyknock
    @Bodyknock หลายเดือนก่อน

    Since the set of reduced form rational numbers with odd denominators is dense, you could look at the graph of the continuation of the function in the negatives by setting the function value to the limit of its odd-denominator domain at every point.

  • @queueeeee9000
    @queueeeee9000 หลายเดือนก่อน +1

    Im getting PTSD of Real Analysis in undergrad.
    Great video!

  • @Tukis1337
    @Tukis1337 หลายเดือนก่อน +1

    Came back after 4 years just to thank you for helping me understand math, and you helped more than you could ever imagine ❤

    • @blackpenredpen
      @blackpenredpen  หลายเดือนก่อน

      I am happy to hear this! Thank you so much.

  • @joseph_soseph9611
    @joseph_soseph9611 27 วันที่ผ่านมา

    Yeah, and my professor put this in an assignment when I was in my first semester. I couldn't find the full domain, and I now hate this function for it

  • @zionfultz8495
    @zionfultz8495 หลายเดือนก่อน

    x^x is really only continuous if only the negative integers are real, although using only odd denominator rationals principally give real solutions, there are branch cuts of exponation where they don't which are needed for continuity here

  • @DrCorndog1
    @DrCorndog1 หลายเดือนก่อน +1

    Zero will be a natural number on the same day that talking about "clopen" intervals becomes acceptable.

  • @sebastianparamera2424
    @sebastianparamera2424 หลายเดือนก่อน +4

    Next do the domain of f(x, y) = x^y.

  • @bouthehabissac1354
    @bouthehabissac1354 หลายเดือนก่อน

    ‏‪6:34‬‏ this can't be real "le zero" can't be forgotten 🙏

  • @dhruvverma9508
    @dhruvverma9508 หลายเดือนก่อน

    It indeed works on desmos
    But only for a second or two
    It shows plenty of points
    Not connected but In an array very close to e^x.

  • @AntimatterBeam8954
    @AntimatterBeam8954 24 วันที่ผ่านมา

    Sometimes desmos shows the negative x part of the graph y=x^x but you have to avoid zooming in with anything but the +/- buttons. I wish I could show it here but I have a screenshot of y=x^x where the negative x points are shown on desmos. I used the downloadable app extension on an old Android tablet

  • @joshuahillerup4290
    @joshuahillerup4290 หลายเดือนก่อน +3

    I'm still not convinced that *no* negative irrational numbers are in the domain. I certainly get that some aren't

    • @NotBroihon
      @NotBroihon หลายเดือนก่อน +2

      I assume he'll address that in a future video (see 7:08).

    • @joshuahillerup4290
      @joshuahillerup4290 หลายเดือนก่อน

      @@NotBroihon hopefully.

  • @GreenMeansGOF
    @GreenMeansGOF หลายเดือนก่อน +12

    Next, find all the zeroes of the Riemann Zeta function.

    • @justusschoenmakers8987
      @justusschoenmakers8987 หลายเดือนก่อน

      Well there are an infinite amount of them

    • @ThoronSage
      @ThoronSage 15 วันที่ผ่านมา

      Me, with an academic Matlab license: I can probably do that in an afternoon.
      Also me: *clueless*

  • @leofun01
    @leofun01 หลายเดือนก่อน

    At least it's beautiful. And now it's matched with my version perfectly.

  • @mitchratka3661
    @mitchratka3661 หลายเดือนก่อน +5

    6:00 why is 2n - 1 better than 2n + 1 for the definition of odd? Is it just so when you set it equal to something you are adding instead of subtracting?

    • @Nameless-qe9hu
      @Nameless-qe9hu หลายเดือนก่อน +6

      Some people prefer that n=0 be the first term, while others prefer that n=1 be the first term.
      That, or adding instead of subtracting might reduce sign errors

    • @Viki13
      @Viki13 หลายเดือนก่อน

      Depends on if n includes 0 or not if it does not then you actually need 2n-1 to represent every odd natural number, if yoi use 2n+1 the smallest value you could get is 3 and not 1

  • @walkerbill2081
    @walkerbill2081 หลายเดือนก่อน

    If you look at the concept of the principal nth-root in complex world, you should get a complex value for all nth-roots (except 1st) of negative (both even and odd roots), because the chosen root must be at arg(negative)/n which is 180°/n by convention.
    For example the principal 3rd-root of -8 or (-8)^(1/3) is not -2 but rather 1 + i√3 because it is located at 180°/3 = 60°, but -2 is located at 180°. This holds for other odd roots. For even roots are obvious though.
    Wolfram Alpha and Mathematica also take odd (principal) roots of negative in this way.
    Also if you take odd roots of negative to be negative, the x^x graph at the negative domain will be not continous because if we take (-1/3)^(-1/3) which is approximately (-0.333333)^-0.333333 (by taking 6 digits behind the comma for example) in that way, it won't be connected to its neighbors like (-0.333332)^-0.333332 and (-0.333334)^-0.333334 (which are both complex valued).
    (-1/3)^(-1/3) = ((-1)^(-1/3))/(3^(-1/3)) = (3^(1/3))/((-1)^(1/3)) ≈ 1.442249/((-1)^(1/3)). Since 3^(1/3) has no problem, we should take a look for the 3rd-roots of -1 or (-1)^(1/3). The three 3rd-roots of -1 are -1 (the real root), 1/2 + i√3/2 (the principal root) and 1/2 - i√3/2. Here we will test just for the principal root (1/2 + i√3/2 ≈ 0.5 + 0.866025i) and the real root (-1).
    If we assume (-1)^(1/3) = 1/2 + i√3/2 (the principal root), then (-1/3)^(-1/3) ≈ 0.721126 - 1.249024i (complex valued)
    If we assume (-1)^(1/3) = -1 (the real root), then (-1/3)^(-1/3) ≈ -1.442249 (real valued)
    But if we take the principal value of (-1/3)^(-1/3) instead which is approximately 0.721126 - 1.249024i, you can see the smooth transition for the input -0.333332, -0.333333 (or -1/3) and -0.333334 in the function x^x:
    (-0.333332)^-0.333332 ≈ 0.721130 - 1.249022i
    (-0.333333)^-0.333333 ≈ 0.721126 - 1.249024i
    (-0.333334)^-0.333334 ≈ 0.721122 - 1.249026i
    But, if you take (-0.333333)^-0.333333 ≈ -1.442249, the graph will be disconnected hence discontinous.🙂

  • @emanuellandeholm5657
    @emanuellandeholm5657 หลายเดือนก่อน

    x^x = e^(x ln x)
    f(z) = z, f(z) = ln z, f(z) = z ln z are all holomorphic functions. f(z) = e^z is also holomorphic, and the composition of holomorphic functions is a holomorphic funciton. I think it's a theorem that when you combine holomorphic functions, worst case you get the intersection of their respective domains. f(z) = ln z is holomorphic on the punctured plane, and that's what you get in this case.
    There are exceptions to this. You can cancel poles. Consider f(z) = z and g(z) = z^-1. The composition is an entire function even thought g(z) has a pole a z = 0 + 0i
    Again; domain: the punctured complex plane. Unless you care about the range being real and singular valued.

  • @r1ckthe
    @r1ckthe หลายเดือนก่อน

    This is exactly the definition of "harder than it looks"

  • @BryndanMeyerholtTheRealDeal
    @BryndanMeyerholtTheRealDeal หลายเดือนก่อน +1

    The domain is x>0, although some negative values give a real number…

  • @scottleung9587
    @scottleung9587 หลายเดือนก่อน

    I'm satisfied now - thanks!

  • @dadoo6912
    @dadoo6912 หลายเดือนก่อน

    no, odd denominator doesn't work either. first of all, (-1/3)^(-1/3) is not the same as cbrt(-3). second of all, if we assume, that raising to 1/n power is the same as taking n-th root, we would expect, that (-1/3)^(-1/3) = (-1/3)^(-2/6), because -1/3 = -2/6, but that's not the case. on the left hand side we have cbrt(-3) = -cbrt(3). on the right hand side the have (-3)^(2/6) = cbrt(3). -cbrt(3) is cleary not equal to cbrt(3). that's the main issue with exponential functions with negative base of a real variable and that's the main reason why we say that base should be greater than zero

  • @kevinstreeter6943
    @kevinstreeter6943 หลายเดือนก่อน

    What about negative integers? They are also in the domain. And, they alternate below and above the x axis and the go to 0 as x goes more negative.

  • @thai_sauce
    @thai_sauce หลายเดือนก่อน

    you truely are the nilered of math

  • @NotBroihon
    @NotBroihon หลายเดือนก่อน

    6:30 my calc 2 prof always said N doesn't include 0, and specifically used N_0 to include it. Seems to me like an adequate solution.

    • @TedHopp
      @TedHopp หลายเดือนก่อน +1

      There are several adequate solutions. There's just no agreement about which one to use and they are not all mutually compatible.

  • @stevemonkey6666
    @stevemonkey6666 หลายเดือนก่อน

    It takes a real man to admit when he was wrong 🤘

  • @keescanalfp5143
    @keescanalfp5143 หลายเดือนก่อน

    of course it could be too easy a thing , but why not give ourselves an idea about the continuity question via the simple series of
    f(-1), f(-2), f(-3), ..
    the range containing
    -1, +¼, -1/27, +1/256, ..
    lying on the two curve parts of the functions
    g(x) = 1 / ( | x | ^ (|x|) )
    and
    h(x) = -1 / ( | x | ^ (|x|) ) ,
    for the domain part
    x < 0 , exclusively .
    both g(x) and h(x) should be real and continuous in this domain .
    ?

  • @pinheadlarry1354
    @pinheadlarry1354 หลายเดือนก่อน

    I always thought that 0 is not in the set of natural numbers but it is in the set of whole numbers

  • @Blade.5786
    @Blade.5786 หลายเดือนก่อน

    Domain X-pansion

  • @unlockmathplus
    @unlockmathplus หลายเดือนก่อน

    Can you make a video for calculate the Integral forth root of tanx Teacher? Thank you.

  • @Ghi102
    @Ghi102 หลายเดือนก่อน

    Do you still have the previous video? I am curious!

  • @Rom_2_RL
    @Rom_2_RL หลายเดือนก่อน +22

    In France, we say that IN = [0;+♾️[ = {0,1,2,3,...}
    And to say that we don't take 0 we write it as the set IN*

    • @Mephisto707
      @Mephisto707 หลายเดือนก่อน +3

      That's how I learned here in Brazil.

    • @sans1331
      @sans1331 หลายเดือนก่อน

      inni da bee

    • @alexandresibert6589
      @alexandresibert6589 หลายเดือนก่อน +1

      Yes but you can't write it like this (normal brackets mean intervals of ℝ). For "intervals" of ℕ you use double brackets,
      ℕ = 〚 0 ; +∞〚

    • @Rom_2_RL
      @Rom_2_RL หลายเดือนก่อน

      @alexandresibert6589 ye ik it was a mistake

    • @sleepysnekk
      @sleepysnekk หลายเดือนก่อน

      here we just write Z_{ \geq 0} or Z_{\geq 1}

  • @carlosp.2898
    @carlosp.2898 หลายเดือนก่อน

    Isn't there a set of irrational numbers that can be written as infinite series of rational numbers with odd denominators? If so, shouldn't those work aswell?

  • @thirstyCactus
    @thirstyCactus หลายเดือนก่อน

    I wonder how that would look plotted.

  • @amoriamer8507
    @amoriamer8507 หลายเดือนก่อน

    also, we can have any negative number as long as it belongs to Z

  • @blackpenredpen
    @blackpenredpen  หลายเดือนก่อน +1

    0^0 finally approaches 0
    th-cam.com/video/X65LEl7GFOw/w-d-xo.htmlsi=4zAEKTg4b3WjP0Ct

    • @lawrencejelsma8118
      @lawrencejelsma8118 หลายเดือนก่อน

      That proof is in error. Infinity - Infinity = undefined or infinite numbers so ✓(x + 1) - √x does not have a limit going to zero necessarily. ✓(x + n) - √x also goes to zero as x becomes large for any integer n of finite value!!

  • @tambuwalmathsclass
    @tambuwalmathsclass หลายเดือนก่อน

    Mathematics 😅
    No Mathematician in Nigeria will consider 0 in the set of Natural numbers but in the set of Whole numbers

  • @stefanodamilano
    @stefanodamilano หลายเดือนก่อน

    I can't believe it

  • @plusminus4
    @plusminus4 หลายเดือนก่อน

    6:40
    Isn't the set of natural numbers supposed to be the set of natural counting numbers? So they're not supposed to include 0 because you don't normally count from 0. 0 is, however, included in the whole numbers set. Correct me if I'm wrong.

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 หลายเดือนก่อน +3

      In the Peano axioms for the natural numbers, 0 is included.

    • @plusminus4
      @plusminus4 หลายเดือนก่อน

      ​@@bjornfeuerbacher5514Ah, I see.

  • @orenfivel6247
    @orenfivel6247 หลายเดือนก่อน +1

    Next analyze f(z) = z^z for complex z

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 หลายเดือนก่อน +1

      That will be horrendous. Or will it? z^z=exp(z ln(z))
      If we fix a branch of ln(z), then given that we can write
      d(z^z)/dz=z^z (1+ln(z))
      it would appear to be a differentiable, hence holomorphic, except at 0. I don't know if we have to fix a specific branch, such as ln(1)=0, or if any branch will work, but I expect most of the complex plane will work for some branch. We may then get a domain of
      C\(Branch cut U {0})
      And if we take the branch cut to be the usual R-, then the domain for a continuous function of the form z^z would be
      C\(-∞,0]

  • @sujanrajakannan
    @sujanrajakannan 13 วันที่ผ่านมา

    f(0)=1 or undefined

  • @gaier19
    @gaier19 หลายเดือนก่อน

    is there a way to "prove" that at least the real part of 0^0 is 1? (from all complex paths)

  • @acelm8437
    @acelm8437 วันที่ผ่านมา

    Stupid 0 ruining everything with "no agreement"

  • @dalwand
    @dalwand หลายเดือนก่อน

    I want to see a graph if the negative side

  • @niom-nx7kb
    @niom-nx7kb หลายเดือนก่อน

    There’s also x=-2n for all n in negative integers

    • @TedHopp
      @TedHopp หลายเดือนก่อน

      All negative integers are in the domain, not just even ones. Moreover, they are all included in -m/(2n-1) (m,n in Z+) that he has in the video. Just set n=1.

    • @niom-nx7kb
      @niom-nx7kb หลายเดือนก่อน

      @@TedHopp oh right

    • @mathmadeeasierwithdelmy953
      @mathmadeeasierwithdelmy953 หลายเดือนก่อน

      ​@@TedHoppwhen you set m=2 and n= 1, x=-2 which results to complex value hence the domain would not exist

    • @TedHopp
      @TedHopp หลายเดือนก่อน

      @@mathmadeeasierwithdelmy953 Huh? (-2)^(-2) = 1/(-2)^2 = 1/4. No complex value in sight.

    • @mathmadeeasierwithdelmy953
      @mathmadeeasierwithdelmy953 หลายเดือนก่อน

      @@TedHopp my bad I was viewing it as -1/2... Thanks

  • @sylasboi
    @sylasboi หลายเดือนก่อน

    I hope we will see an integral with the natural part of a number 😢

  • @Myrskylintu
    @Myrskylintu หลายเดือนก่อน

    Don't try to make short videos. I love long-form!

  • @Qermaq
    @Qermaq หลายเดือนก่อน

    0^0 should be undefined. I can set up an arbitrary limit problem showing 0^0 is any value. You cannot do that with other values.

  • @jamesharmon4994
    @jamesharmon4994 หลายเดือนก่อน

    What caught my attention last time was x = -2/6. Yes, this value equals -1/3, but it is NOT -1/3.

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 หลายเดือนก่อน +4

      Huh? Equals simply means they're the same. -1/3 = -2/6 if they are the same, which is to say -1/3 is -2/6.

    • @Ninja20704
      @Ninja20704 หลายเดือนก่อน

      @@xinpingdonohoe3978the issue is that using -1/3 vs -2/6 as exponents creates a lot problems when the base is negative.
      Like (-1)^(1/3) = -1 but (-1)^(2/6) will either give you 1 if you do [(-1)^2]^(1/6) or a complex number if you do [(-1)^(1/6)]^2
      The easiest way to address it is just to say that you cannot apply the x^(m/n) = [x^m]^(1/n) rule if x is negative and m/n is not in simplest form

    • @keescanalfp5143
      @keescanalfp5143 หลายเดือนก่อน

      ​@@xinpingdonohoe3978,
      well by this we remember what problems emerge when working with negative powers, negative bases, negative or broken exponents on school , right before the introduction of logarithms with “all” kind of bases .
      and, the rationals -1/3 and -2/6 may of course have the same numerical value but as an operator, e.g. as exponents they are surely really different . just say odd and even .

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 หลายเดือนก่อน

      @@keescanalfp5143 even as exponents, they're the same. p/q as an exponent is the same as it is in irreducible form, and that can be verified by turning it into an exp equation and using Euler's identity, for whatever branch of logarithm.

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 หลายเดือนก่อน +1

      @keescanalfp5143 they're the same even as exponents. The exponent p/q is the same as the exponent ap/aq, and that can be checked by going into exponential form and using Euler's identity, for whatever logarithm branch.

  • @werkax
    @werkax หลายเดือนก่อน

    i think that a function joining the functions
    g(x) = |x|^x,
    x∈ℝ+ ∩ x = (-2m)/(2n-1), m,n∈ℤ+
    and
    h(x) = -|x|^x,
    x = -(2m-1)/(2n-1), m,n∈ℤ+
    describes the x^x

  • @SimpCe
    @SimpCe หลายเดือนก่อน

    Domain expansion:f(x)=x^x

  • @zachansen8293
    @zachansen8293 หลายเดือนก่อน

    Why doesn't WA consider those other points as part of the domain?

  • @AbhinavYadav76t68
    @AbhinavYadav76t68 หลายเดือนก่อน

  • @pocsosocskos9179
    @pocsosocskos9179 หลายเดือนก่อน +1

    why did you say it was better as m/2n-1 and not m/2n+1 ?

    • @blackpenredpen
      @blackpenredpen  หลายเดือนก่อน

      Bc i put n as a pos integer. So 2n+1 would start at 3 but i need the bottom to start at 1.

    • @pocsosocskos9179
      @pocsosocskos9179 หลายเดือนก่อน

      @@blackpenredpen oooh makes a lot of sense, thank you :)

  • @Tricky313chess
    @Tricky313chess หลายเดือนก่อน

    How can f(x) = x^x be a function for all numbers, when f(-1/2) and f(-2/4) have different values

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 หลายเดือนก่อน

      @@Tricky313chess two points: first, this would have a lot of multivalued shenanigans. Second, even as principal values, they have the same value.
      f(-1/2)=f(-2/4)=-i|√2|

  • @spicca4601
    @spicca4601 หลายเดือนก่อน

    How can we calculate (-pi)^(-pi)?

  • @zahirulhuq6233
    @zahirulhuq6233 หลายเดือนก่อน +1

    What is the inverse function of this function 🤔

    • @هشامكبيسة-ي2ح
      @هشامكبيسة-ي2ح หลายเดือนก่อน +5

      y = x^x = e^{xln(x)}>> ln(y) = x ln(x), Let u=lnx then ln(y) = u e^u then u=W(ln(y)), Substitute back ln(x) = W(ln(y)) so x=e^{W(\ln(y))} Final Result, The inverse function of for f can be expressed as: f^{-1}(x) = e^{W(ln(x))} ( without forgetting the domain of x which is (0;1/e] or [1\e;+oo[ because we have to check tat th function is one to one)

  • @Anp137
    @Anp137 หลายเดือนก่อน

    When MATHEMATICIAN is bored❤😂

  • @flamewings3224
    @flamewings3224 หลายเดือนก่อน

    I don’t get why m/(2n-1) can’t be 0 if m, n € Z+? I thought Z+ is natural numbers with 0 being included. Maybe correctly say m is natural and n is Z+?

  • @axbs4863
    @axbs4863 หลายเดือนก่อน

    Please please please do x^x = -x

  • @Cavendish78-m2u
    @Cavendish78-m2u หลายเดือนก่อน

    How did the calculus student go about his day after a breakup?
    He derived with no respect to x

  • @pijanV2
    @pijanV2 หลายเดือนก่อน

    In desmos it shows different

    • @Rando2101
      @Rando2101 หลายเดือนก่อน

      It probably only shows continuous parts

  • @koenth2359
    @koenth2359 หลายเดือนก่อน

    Is (-6/10)^(-6/10) defined or not according to this video?

  • @Shack263
    @Shack263 หลายเดือนก่อน

    I wish N included zero definitively, because Z+ doesn't and there's no need for confusion and redundancy.

    • @ryznak4814
      @ryznak4814 หลายเดือนก่อน

      Except Z+ does in Europe. Because here 0 is considered to be both a positive and a negative number and not neither. So Z+ is the same thing as N which also includes 0 here.

    • @Xnoob545
      @Xnoob545 หลายเดือนก่อน

      ​@@ryznak4814 wrong
      In Lithuania 0 is taught as a neutral number

    • @ryznak4814
      @ryznak4814 หลายเดือนก่อน

      @@Xnoob545 maybe not in every single Europe in country. But I am a math student and I have had the occasion of exchanging with people from several European countries about math and all of those people were taught the same things.

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 หลายเดือนก่อน

      @@Shack263 who uses Z+ though? People who want to be pedantic.

    • @Shack263
      @Shack263 หลายเดือนก่อน

      @@xinpingdonohoe3978 being pedantic is the point of maths

  • @SuperDeadparrot
    @SuperDeadparrot หลายเดือนก่อน

    It’s an entire function, it exists over the entire complex plane, right?

    • @vascomanteigas9433
      @vascomanteigas9433 หลายเดือนก่อน

      Yes, with an infinite number of branch cuts over the negative real axis.

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 หลายเดือนก่อน

      @@vascomanteigas9433 well, you *could* cut them any way you like that works, but if we follow the standard logarithmic cut then yes, over the negative real axis.

    • @vascomanteigas9433
      @vascomanteigas9433 หลายเดือนก่อน

      @@xinpingdonohoe3978 This function are also called the Tetration Function.

  • @girishjain5288
    @girishjain5288 หลายเดือนก่อน

    why is 2n-1 better tho?

  • @huseyinkaya9245
    @huseyinkaya9245 หลายเดือนก่อน

    Can you solve x^6=(x+1)^6

  • @HeckYeahRyan
    @HeckYeahRyan หลายเดือนก่อน

    noice

  • @ferlywahyu342
    @ferlywahyu342 หลายเดือนก่อน

    Can you solve this x^x=-1

  • @PleegWat
    @PleegWat หลายเดือนก่อน

    As the negative rationals which are in the domain are dense in the negative reals, we can still ask for which negative values in the domain the function is continuous.

  • @josenobi3022
    @josenobi3022 หลายเดือนก่อน +1

    Lmao you used Z+ to avoid the confusion but Z+ still includes zero
    0 is a positive number 0 ≥ 0, just not a strictly positive number

    • @isjosh8064
      @isjosh8064 หลายเดือนก่อน +2

      I think + means strictly positive

    • @josenobi3022
      @josenobi3022 หลายเดือนก่อน

      @@isjosh8064 Well it probably depends where you were taught
      My point is that doesn’t clear up the confusion

    • @Gyan-fx9zx
      @Gyan-fx9zx หลายเดือนก่อน +2

      Positive integer means strictly greater than zero to include zero we use non negative integers

    • @Ninja20704
      @Ninja20704 หลายเดือนก่อน +2

      0 is neither positive nor negative. That is much less disputed than whether 0 is a natural number or not.
      That is why “positive” and “non-negative” are not the same because the former does not include 0 but the latter does

    • @josenobi3022
      @josenobi3022 หลายเดือนก่อน

      @Ninja20704 how do you quantify how much something is disputed ?
      Also I can say that "positive" and "strictly positive" are not the same because the first one includes 0 and not the second one