How do I do this? Calculus limit inf-inf form with L'Hopital's Rule! Reddit r/calculus

แชร์
ฝัง
  • เผยแพร่เมื่อ 22 ธ.ค. 2024

ความคิดเห็น •

  • @bprpcalculusbasics
    @bprpcalculusbasics  3 หลายเดือนก่อน

    Calculus 1, how do you evaluate these limits (not 0/0 form) Reddit r/homeworkhelp
    th-cam.com/video/tCzh__jf-u4/w-d-xo.html

  • @alex_ramjiawan
    @alex_ramjiawan 3 หลายเดือนก่อน +8

    I'm aware of the inside-out changeability due to ln being a continuous function, but I never learned why that's the case.

    • @konradybcio
      @konradybcio 3 หลายเดือนก่อน +10

      continuity itself means that the limit of a function at a point is equal to its value at that point, performing the switcheroo is applying that principle in reverse order: the value at a point is equal to the limit of the function at that point (because = goes both ways)

    • @alex_ramjiawan
      @alex_ramjiawan 3 หลายเดือนก่อน +3

      @@konradybcio Thanks. Clears things up.

    • @nobodyspecial7895
      @nobodyspecial7895 3 หลายเดือนก่อน

      @@konradybcio When is it not the case that a point on a graph would be different to the limit of that same x value?

    • @konradybcio
      @konradybcio 3 หลายเดือนก่อน +1

      @@nobodyspecial7895 when there's a discontinuity, the graph "teleports" at one point
      Take f(x) = x-1 for x < 5, x+1 for x ≥ 5
      The limit on the left side of 5 is equal to 4, and on the right side it's equal to 6, meaning the limit at 5 doesn't exist
      You can also look up Dirichlet function, you have f(1)=1, but the limit at 1 doesn't exist (easily proven with epsilon-delta as the values never get closer together)

    • @nobodyspecial7895
      @nobodyspecial7895 3 หลายเดือนก่อน

      @@konradybcio Thanks for this answer, I'll have to look into it more.

  • @Brid727
    @Brid727 3 หลายเดือนก่อน

    for some reason i did the following:
    lim {ln(1-cosx) - ln(x^2)} as x->0
    lim [ln{(1-cosx)/x^2}] as x->0
    let L = lim [ln{(1-cosx)/x^2}] as x->0
    e^L = lim (1-cosx)/x^2 as x->0
    now to focus on the RHS
    lim {(1-cosx)/x^2} as x->0
    we get 0/0, so we use L'Hopital's rule
    after which, we get,
    lim (sinx/2x) as x->0
    =(1/2)*{lim (sinx/x) as x->0}
    the limit in the latter portion equals 1
    =1/2
    so e^L=1/2
    L=ln(1/2) = -ln(2)

  • @jackychanmaths
    @jackychanmaths 3 หลายเดือนก่อน

    Since lim_(x->0) sin x / x cannot be solved by L' Hospital's rule, lim_(x->0) [(1 - cos x)/x^2] also cannot be solved by L' Hospital's rule since the derivative of cos x also depends on lim_(x->0) sin x / x.
    The correct way should be
    lim_(x->0) [(1 - cos x)/x^2]
    = lim_(x->0) {[2sin^2 (x/2)]/x^2}
    = 1/2* lim_(x->0) [sin (x/2) / (x/2)]^2
    = 1/2* { lim_(x->0) [sin (x/2) / (x/2)] }^2
    = 1/2 * 1^2
    = 1/2

  • @AltAaltonnov
    @AltAaltonnov หลายเดือนก่อน

    Why can't you apply L'Hospital to lim x-> 0 sin (x) / x? It's of the form 0/0, and L'Hospital gives cos x / 1 and cos(0)/1 equals 1....

  • @blueslime5855
    @blueslime5855 3 หลายเดือนก่อน +3

    1-cosx ~ x²/2 (Taylor series) therefore we have
    ln(x²/2)-ln(x²)=ln½, done

    • @ramennoodle9918
      @ramennoodle9918 3 หลายเดือนก่อน

      this is if using L’Hôpital wasn’t required?

    • @blueslime5855
      @blueslime5855 3 หลายเดือนก่อน +1

      ​@@ramennoodle9918 I don't think using l'Hôpital's is ever required, in fact it's usually recommended against unless you're learning it for the first time. So in this case, it turns out to be much simpler to use Taylor expansions.

  • @letsstudywitheda7140
    @letsstudywitheda7140 3 หลายเดือนก่อน +1

    Please put Turkish subtitles

    • @bprpcalculusbasics
      @bprpcalculusbasics  3 หลายเดือนก่อน

      I just did. Please check and let me know if it works!

    • @letsstudywitheda7140
      @letsstudywitheda7140 3 หลายเดือนก่อน

      ​​@@bprpcalculusbasicsIt works, thank you.☺️

  • @Mediterranean81
    @Mediterranean81 3 หลายเดือนก่อน

    The limit of 1-cos (x)/x^2 is a famous limit (=1/2)

    • @robertveith6383
      @robertveith6383 3 หลายเดือนก่อน

      No, your post is wrong. 1) You never mentioned the x going to *what limit.* 2) You are missing needed grouping symbols in the numerator: [1 - cos(x)]/x^2.