Can you calculate the side length X? | (Circle) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ม.ค. 2025

ความคิดเห็น • 36

  • @jamestalbott4499
    @jamestalbott4499 วันที่ผ่านมา +2

    Appreciate the introduction to the Secant-Secant Theorem.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Sure!
      Glad to hear that!
      Thanks for the feedback ❤️

  • @MdShahriarHossain-l1n
    @MdShahriarHossain-l1n วันที่ผ่านมา +4

    😊 Amazing problem! I really like this! This was a bit challenging! I am happy that here we can use the secant - secant theorem! Hope to get new problems everyday where we can use different theorems. All the best!

  • @marioalb9726
    @marioalb9726 วันที่ผ่านมา +4

    △ABC is similar to △BCD
    1) ∡ACB is common, ∡ACB = ∡DCB
    2) ∡CDB = ∡ABC, because ∡COB = ∡COE (isosceles triangle BCE)
    Therefore::
    x/9 = 5/x
    x² = 45 --> x= 3√5 cm (Solved √)

    • @soli9mana-soli4953
      @soli9mana-soli4953 12 ชั่วโมงที่ผ่านมา

      Great! 👍 even if I didn’t caught your explanation about the similarity

    • @marioalb9726
      @marioalb9726 10 ชั่วโมงที่ผ่านมา +2

      @soli9mana-soli4953
      Two triangles are similar If you can demonstrate, at least, that two of its angles are equals.
      ∡CDB = ½ ∡COB
      ∡CBE = ½ ∡COE
      and ∡COB = ∡COE

    • @soli9mana-soli4953
      @soli9mana-soli4953 6 ชั่วโมงที่ผ่านมา

      @ thank you for the explanation, your solution is nice 👍

    • @waheisel
      @waheisel 4 ชั่วโมงที่ผ่านมา

      Looks like a proof of the secant theorem?

  • @ashutoshkumardalei3264
    @ashutoshkumardalei3264 วันที่ผ่านมา +1

    Thanks for the introduction of secant secant theorem

  • @marioalb9726
    @marioalb9726 วันที่ผ่านมา +2

    Similarity of triangles:
    x/9 = 5/x
    x² = 45 --> x = 3√5 cm ( Solved √ )

    • @marioalb9726
      @marioalb9726 วันที่ผ่านมา +1

      △ABC is similar to △BCD
      1) ∡ACB is common, ∡ACB = ∡DCB
      2) ∡CDB = ∡ABC, because ∡COB = ∡COE (isosceles triangle BCE)
      Too complicated video solution.

  • @Ravis_funn_study
    @Ravis_funn_study วันที่ผ่านมา +1

    Nice problem sir ❤

  • @jimlocke9320
    @jimlocke9320 วันที่ผ่านมา +1

    As long as chords BC and CE are equal in length, any locations of B and C are valid. The problem statement implies that x is the same for all valid locations. As B and C become closer and closer to each other, the limiting case is where they merge into the same point. In that case, AB is a tangent and we apply the tangent-secant theorem to find that the tangent length is 6. ABC is a right triangle. Applying the Pythagorean theorem, AC has length 9, AB length 6 and BC length x., so 9² = 6² + x², 81 = 36 + x², x² = 81 - 36 = 45, x = √(45) = 3√5, as PreMath also found.
    On a multiple choice test, choose 3√5 and go on. If the test does not require you to show your work, just provide x = 3√5 as an answer. If you must show your work, next solve the general case. This solution method may be helpful for finding the solution to the general case. It also serves as a check that you solved the problem correctly.

    • @phungpham1725
      @phungpham1725 วันที่ผ่านมา

      @jimlocke9320: thank you so much!

  • @salimahmad7414
    @salimahmad7414 วันที่ผ่านมา

    Shaandaar,
    Excellent.

  • @marcgriselhubert3915
    @marcgriselhubert3915 วันที่ผ่านมา

    Excellent.

  • @johnbrennan3372
    @johnbrennan3372 วันที่ผ่านมา +1

    If you drop a perpendicular from o to EB , it bisects EB so CF passes through o

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq วันที่ผ่านมา +2

    **Enjoyed sol offered. Now like to forward a sol using
    Theorem on similar Triangles **
    We may join BD
    Then we may get two similar triangles ABD & ACE [ as ang BAC is common, ang DBE =ang DCE as these are inscribed angle on the same arc DE ]
    Then
    4/t =( 2m+t)/(4+5)
    >4/t =(2m+t)/9
    > 2mt +t^2 =36 -- (1)
    In rt triangle ACF hypotenuse
    AC^2 =CF^2+(AE + EF) ^2
    =[x ^2 - m^2+(t +m) ^2]
    =x ^2-m^2+t^2+2mt+m^2
    =x ^2 +t^2+2mt
    =x ^2 +36 (pl see eq 1)
    Hence x ^2 +36=81[as AC^2=(4+5)^2]
    > x=√45=3√5 units

    • @marioalb9726
      @marioalb9726 วันที่ผ่านมา +1

      Similarity of triangles:
      x/9 = 5/x
      x² = 45 --> x = 3√5 cm

    • @marioalb9726
      @marioalb9726 วันที่ผ่านมา +1

      △ABC is similar to △BCD
      1) ∡ACB is common, ∡ACB = ∡DCB
      2) ∡CDB = ∡ABC, because ∡COB = ∡COE (isosceles triangle BCE)
      Therefore:: x/9 = 5/x

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq วันที่ผ่านมา

      @@marioalb9726 will see and then will respond. I think we chatted on another occasion isn"t?

    • @PrithwirajSen-nj6qq
      @PrithwirajSen-nj6qq วันที่ผ่านมา

      @@marioalb9726 OK, may offer this solution as an another method in the main format.
      I enjoyed it.

  • @dariosilva85
    @dariosilva85 วันที่ผ่านมา +1

    The altitude that you dropped from C down to EB must go through the center of the circle, because of symmetry.

  • @soli9mana-soli4953
    @soli9mana-soli4953 11 ชั่วโมงที่ผ่านมา

    setting AE = a , EB = b and angles in B and C = alpha, I solved in this way:
    applying secant-secant theorem we have:
    9*4 = (a+b)*a
    36 = a² + ab
    applying sines law on BCE:
    x/sin alpha = b/sin(180-2alpha)
    and knowing that sin(180-2alpha)=sin 2alpha
    and sin 2 alpha = 2 sin alpha cos alpha
    we get
    cos alpha = b/2x
    applying cosine rule on ABC we have:
    (4+5)² = x² + (a+b)² - 2x*(a+b)*b/2x
    81 = x² + a² + ab (that was a lucky result I didn't count on at the beginning, being started with 3 unknowns!)
    81 = x² + 36
    x = 3sqrt5

  • @ДмитрийИвашкевич-я8т
    @ДмитрийИвашкевич-я8т วันที่ผ่านมา

  • @joseeduardomachado3436
    @joseeduardomachado3436 วันที่ผ่านมา

    Linda questão

  • @alexundre8745
    @alexundre8745 วันที่ผ่านมา

    Bom dia Mestre
    Show de exercício

  • @georgexomeritakis2793
    @georgexomeritakis2793 วันที่ผ่านมา

    Triangles CDB and CBA are similar so CD/CB=CB/CA=DB/DA so CB*CB=CA*CD=45

  • @AndrewCWSoh
    @AndrewCWSoh 17 ชั่วโมงที่ผ่านมา

    Can you help to solve this difficult probability question.
    In a bag, there were 6 red, 8 yellow and 10 blue balls.
    one after another, balls are removed without replacement.
    Find (a) the probability that red is completely removed before yellow; and (b) the probability that red is completely removed before yellow and blue. Thanks.

  • @unknownidentity2846
    @unknownidentity2846 วันที่ผ่านมา +1

    Let's find x:
    .
    ..
    ...
    ....
    .....
    According to the intersecting secants theorem we know:
    AE*AB = AD*AC
    AE*(AE + BE) = AD*(AD + CD) = 4*(4 + 5) = 4*9 = 36
    Let M be the midpoint of BE. Since BCE is an isosceles triangle, we know that BCM and CEM are congruent right triangles. So we can conclude:
    BM = EM ⇒ BE = BM + EM = 2*EM
    Since ∠AMC=∠EMC=90°, ACM is also a right triangle. By applying the Pythagorean theorem to the right triangles ACM and CEM we obtain:
    CM² + AM² = AC²
    CM² + (AE + EM)² = (AD + CD)²
    CM² + AE² + 2*AE*EM + EM² = (4 + 5)²
    CM² + AE² + AE*2*EM + EM² = 9²
    CM² + AE² + AE*BE + EM² = 81
    CM² + AE*(AE + BE) + EM² = 81
    CM² + 36 + EM² = 81
    CM² + EM² = 45
    x² = CE² = CM² + EM² = 45 ⇒ x = √45 = 3√5
    Best regards from Germany

  • @DB-lg5sq
    @DB-lg5sq วันที่ผ่านมา

    شكرا لكم على المجهودات
    المستقيم (CF) مار من النقطة O.

  • @jonchester9033
    @jonchester9033 วันที่ผ่านมา

    Much fun. Makes me feel like a clever detective solving a complex whodunit.

  • @michaelstahl1515
    @michaelstahl1515 วันที่ผ่านมา

    Please proof the secant theorem .

  • @sergioaiex3966
    @sergioaiex3966 19 ชั่วโมงที่ผ่านมา

    Solution:
    We know that BC is equal to CE, thus BCE is an isosceles triangle. From C we draw a perpendicular until the point F on the line AB, and we label the length as h, such that F is EB midpoint.
    EF = k
    BF = k
    Applying Pythagorean Theorem in Triangle BCE, we have:
    k² + h² = x² ... ¹
    Let's label AE = z
    Applying, from A, Secant Theorem, we have:
    AD × AC = AE × AB
    4 × (4 + 5) = z × (z + k + k)
    4 × (9) = z × (z +2k)
    z² + 2zk = 36 ... ²
    Applying Pythagorean Theorem once again in Triangle ACF, we have:
    (AE + EF)² + (CF)² = (AD + CD)²
    (z + k)² + (h)² = (4 + 5)²
    z² + 2zk + k² + h² = 9²
    (z² + 2zk ... replacing from Eq ² = 36) + (k² + h² ... replacing from Eq ¹ = x²) = 9²
    36 + x² = 81
    x² = 45
    x = 3√5 Units ✅
    x ≈ 6,7082 Units ✅

  • @uwelinzbauer3973
    @uwelinzbauer3973 วันที่ผ่านมา

    Hello,
    I was trying to find the radius of the circle.
    What I got as the result was sqrt(45/2), because F has to be the intersection point of the perpendicular through the mid point between D and C, and the Thales circle above AC with radius 9/2.
    So the conclusion would be, that the center point O of the circle and point F are congruent.
    If I'm not wrong?
    Did anyone else check?
    Best greetings and wishes!

  • @Amor-g5b
    @Amor-g5b วันที่ผ่านมา

    John a raison o appartient à la médiatrice du triangle isocèle inscrit dans le cercle