Remainder & Factor Theorem (2 of 3: Fully factorising a polynomial)

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ม.ค. 2025

ความคิดเห็น • 14

  • @brucedienst7553
    @brucedienst7553 5 ปีที่แล้ว +13

    I just want to see the kids reactions when he teaches them synthetic division

  • @WellThereYouGo
    @WellThereYouGo 2 ปีที่แล้ว +1

    10:58 Choose easy things for yourself rather than hard things

  • @ermelliageorge279
    @ermelliageorge279 5 ปีที่แล้ว +4

    Omg this was much needed.
    I just learnt how to do this in my AP Math and I'm kinda struggling
    With this video I'm sure I will ace my exams

  • @arvindgupta7798
    @arvindgupta7798 5 ปีที่แล้ว +3

    Excellent sir G.

  • @ratulmondal327
    @ratulmondal327 5 ปีที่แล้ว +2

    Outstanding.!!!

  • @CareerCoachMo
    @CareerCoachMo 5 ปีที่แล้ว +2

    Good teacher

  • @enzuber
    @enzuber 5 ปีที่แล้ว +6

    "Do we use Maths in Focus really?" 😀

  • @aymanmansoori8936
    @aymanmansoori8936 3 ปีที่แล้ว

    2:28 "I am gonna put threes there everywhere i see Ex-es" 🤣

  • @ahmadshahkhan7634
    @ahmadshahkhan7634 5 ปีที่แล้ว +2

    Why not discuss the sub factorial isn't that be great🤔

  • @user-us4ws9px2s
    @user-us4ws9px2s 5 ปีที่แล้ว +2

    i was looking forward for the proof of it .... :(

  • @bisaresxyrellemarieb.3772
    @bisaresxyrellemarieb.3772 5 ปีที่แล้ว +2

    This is not a remainder theorem stuffs, but, please solve and explain to me this Problem. Find the equations of the lines containing the point(4,7) and passing at a distance 1 from the origin. Thanks

    • @geoffnet1
      @geoffnet1 5 ปีที่แล้ว +5

      The two lines in slope-point form are:
      y - 7 = (12/5)(x - 4)
      and
      y - 7 = (4/3)(x - 4)
      The way I did it would take a lot of time to explain. Basically, if the lines pass a distance 1 from the origin, that means the lines are tangent to the circle x²+y²=1. Which means each line has one point on that unit circle (call this point (x*, y*)), and another point at (4, 7). So we know (x*, y*) satisfies y* - 7 = m(x* - 4) for some slope m. Also, since we know a circle's tangent lines are perpendicular to the diameter at (x*, y*) (and that perpendicular lines have negative reciprocal slopes), we also know that (x*, y*) satisfies y* - 0 = (-1/m)(x* - 0) for the same m.
      Solve each linear equation for m, and substitute one expression for m into the other equation, to get (y - 7)/(x - 4) = -x/y. Rearrange and use x²+y²=1 to get a new line: y = (-4/7)x + 1/7.
      The points on this line that intersect the unit circle are the 2nd points for the two original lines we wanted. Replace y with (-4/7)x + 1/7 in the equation x²+y²=1, and get a quadratic in x. The roots of this quadratic will be x=12/13 and x=-4/5.
      Plug these x-values back into y = (-4/7)x + 1/7 to get the corresponding y-values. The points are (x,y) = (12/13, -5/13) and (x,y) = (-4/5, 3/5).
      Finally, use these coordinates to find the slopes of the two lines: m=12/5, and m=4/3.
      There may be an easier way, but this is what I found.

    • @bisaresxyrellemarieb.3772
      @bisaresxyrellemarieb.3772 5 ปีที่แล้ว +2

      Finally I got it. Thanks a lot for the help. Hopefully, I can approach you AGAIN if ever I need your awesome explanations. ; )

  • @Ridhi259
    @Ridhi259 5 ปีที่แล้ว +3

    Hello SIR 👋
    I think you should leave a reply for all your students here 💚🌸💯