Harvard University Admission Interview Tricks | Find the Value of a+b+c=?

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 พ.ย. 2024

ความคิดเห็น • 16

  • @哈哈-h2e
    @哈哈-h2e หลายเดือนก่อน +1

    sum all
    2(ab+bc+ca)=1200, ab+bc+ca=600
    bc=300
    ca=200
    ab=100
    (abc)^2=6000000
    abc=1000sqrt(6), -1000sqrt(6)
    a=+-10/3sqrt(6)
    b=+-5sqrt(6)
    c=+-10sqrt(6)

  • @maxwellarregui814
    @maxwellarregui814 หลายเดือนก่อน +2

    Sres. Reciban un cordial saludo, gracias por este bonito ejercicio de aplicación de productos notables. Éxitos.

    • @superacademy247
      @superacademy247  หลายเดือนก่อน +1

      You're welcome.💕🔥🥰🤩✅ Thanks too.

  • @Bible_bits_7
    @Bible_bits_7 หลายเดือนก่อน +1

    ab+ac=300;ab+bc=400;ac+bc=500;bc-ac=100;2ac=400;ac=200;ab=100;c=2b; bc=300;ac=200;b/a=1.5;b=1.5a;c=3a;1.5 a^2 +3a^2 = 300=>a= (10/3)*sqrt(6);b=1.5 a; c=3a

  • @9허공
    @9허공 18 วันที่ผ่านมา

    Adding 3 equations => 2(ab + bc + ca) = 1200 => ab + bc + ca = 600
    => bc = 300 , ca = 200 , ab = 100
    Multiplying 3 equations => (abc)^2 = 6*10^6 => abc = ±1000√6
    => a = ±10√6/3, b = ±10√6/2, c = ±10√6 => a + b + c = ±55√6/3

  • @sankaranmurthy573
    @sankaranmurthy573 หลายเดือนก่อน +1

    First, forget the 100's and solve a*(b+c) = 3 .... (1); b*(c+a) = 4 .... (2); c*(a+b) = 5 .... (3). Then we can scale up a, b and c each by a factor of 10 to get the final answer.
    With cyclic equations like these, it often helps to subtract two equations and use the result together with the third. So we try
    b+c = 3/a and c+a = 4/b and subtracting, we get b-a = 3/a - 4/b. This is not terribly helpful so we try another way:
    ab + ac - bc - ba = 3-4 --> c*(a-b) = -1 --> a-b = -1/c while the last equation can be written as a+b = 5/c. Now we can easily solve a = 2/c and b = 3/c. .... (4).
    Then substitute these in either ..(1) or ..(2) to get
    (2/c) * (3/c + c) = 3 --> 2*(3+c^2) = 3c^2 --> c^2 = 6 and c = plusorminus sqrt(6).
    If we take c = sqrt(6); a = 2/sqrt(6) = sqrt(6)/3 and b = sqrt(6)/2. Finally, scaling up by 10,
    Final answer: a = 10*sqrt(6)/3; b = 5*sqrt(6) and c = 10*sqrt(6) and a+b+c = (55/3) * sqrt(6).
    If we take c = -sqrt(6), a and b will also be negative but the products will all be positive. Nothing wrong there so another answer is a+b+c= -(55/3) * sqrt(6).

    • @undercoveragent9889
      @undercoveragent9889 หลายเดือนก่อน

      Yes, this is similar to the route I took. I simply expressed 'a' and 'b' in terms of 'c' and substituted in 'c(a+b)=500' to get 'c(c/3+c/2)=500' and a solution for 'c'. Then of course, 'c+c/3+c/2=a+b+c'.

  • @key_board_x
    @key_board_x หลายเดือนก่อน +2

    From (1)
    a.(b + c) = 300
    ab + ac = 300 ← equation (4)
    a.(b + c) = 300
    b + c = 300/a ← equation (8)
    From (2)
    b.(a + c) = 400
    ab + bc = 400 ← equation (5)
    From (3)
    c.(a + b) = 500
    ac + bc = 500 ← equation (6)
    c.(a + b) = 500
    (a + b) = 500/c ← equation (7)
    (4) - (5)
    (ab + ac) - (ab + bc) = 300 - 400
    ab + ac - ab - bc = - 100
    ac - bc = - 100
    c.(a - b) = - 100
    a - b = - 100/c → recall (7): a + b = 500/c
    a + b = 500/c
    --------------------------------------------------------sum
    2a = - (100/c) + (500/c)
    2a = 400/c
    a = 200/c ← equation (9)
    (5) - (6)
    (ab + bc) - (ac + bc) = 400 - 500
    ab + bc - ac - bc = - 100
    ab - ac = - 100
    a.(b - c) = - 100
    b - c = - 100/a → recall (8): b + c = 300/a
    b + c = 300/a
    -------------------------------------------------------sum
    2b = - (100/a) + (300/a)
    2b = 200/a
    b = 100/a → recall (9): a = 200/c
    b = 100/(200/c)
    b = 100c/200
    b = c/2 ← equation (10)
    Restart from (7)
    (a + b) = 500/c → recall (9): a = 200/c
    (200/c) + b = 500/c → recall (10): b = c/2
    (200/c) + (c/2) = 500/c
    c/2 = (500/c) - (200/c)
    c/2 = 300/c
    c² = 600
    c = ± 10√6
    First case: c = 10√6
    Recall (10): b = c/2 → b = 5√6
    Recall (9): a = 200/c → a = 200/(10√6) = 20/√6 = (20√6)/6 = (10√6)/3
    Second case: c = - 10√6
    Recall (10): b = c/2 → b = - 5√6
    Recall (9): a = 200/c → a = 200/(- 10√6) = - 20/√6 = - (20√6)/6 = - (10√6)/3
    Solution: [a ; b ; c]
    [(10√6)/3 ; 5√6 ; 10√6]
    [- (10√6)/3 ; - 5√6 ; - 10√6]

    • @superacademy247
      @superacademy247  หลายเดือนก่อน

      Thanks for detailed and resourceful explanation 🙏🤩🤩💕🥰. But you're required to find the sum of a, b and c.

    • @key_board_x
      @key_board_x หลายเดือนก่อน

      @@superacademy247 sorry for this missing
      a + b + c = ± [(10√6)/3 + 5√6 + 10√6]
      a + b + c = ± (10√6 + 15√6 + 30√6)/3
      a + b + c = ± (55√6)/3

  • @EkuuleusNorth
    @EkuuleusNorth หลายเดือนก่อน

    Is an answer in the form a+b+ c a solution. I got the answers a=100/(150^0.5) b=(150^0.5) and c= 300/(150^0.5) and second answer a=-100/(150^0.5) b=-(150^0.5) and c= -300/(150^0.5)

  • @satrajitghosh8162
    @satrajitghosh8162 หลายเดือนก่อน

    a b + b c + c a
    = (300 +400 + 500)/2 = 600
    c a = ( a b + b c + c a) - ( a b + b c)
    = 200
    b c = 600 - 300 = 300
    a b = 600 - 500 = 100
    a : b : c = (1/3 ) : (1/ 2) : 1
    = 2 : 3 : 6
    a b c = 1000 √ 6, -1000 √ 6,
    a = 10 √6 /3,
    b = 10 √6 /2,
    c = 10 √6
    Or
    a = -10 √6 /3,
    b = -10 √6 /2,
    c = -10 √6

  • @sasuketaka5971
    @sasuketaka5971 หลายเดือนก่อน

    Write with spidol, I can't see

    • @superacademy247
      @superacademy247  หลายเดือนก่อน +1

      Thanks for your tips. I've already begun writing with spidol

    • @sasuketaka5971
      @sasuketaka5971 หลายเดือนก่อน

      @@superacademy247 thanks for your attention sir