Bernoulli Differential Equation (with a missing solution)

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ม.ค. 2025

ความคิดเห็น • 24

  • @holyshit922
    @holyshit922 7 ปีที่แล้ว +2

    Bernoulli equation has separable integrating factor
    We can use integrating factor directly to Bernoulli equation and then integrating factor will be in the separable form

    • @moonsmoonsloverg1rl
      @moonsmoonsloverg1rl 4 หลายเดือนก่อน +1

      How do you do that?

    • @holyshit922
      @holyshit922 4 หลายเดือนก่อน +2

      @@moonsmoonsloverg1rl in separable form means that you look for integrating factor in the form
      mu(x,y) = phi(x)psi(y)
      then plug in into condition for exact equation
      Suppose we have following equation
      P(x,y)dx+Q(x,y)dy = 0
      Let multiply it by undetermined function mu(x,y)
      mu(x,y)P(x,y)dx+mu(x,y)Q(x,y)dy = 0
      Condition for exact equation is
      partial mu(x,y)P(x,y)/partial y = partial mu(x,y)Q(x,y)/partial x
      partial mu(x,y)P(x,y)/partial y - partial mu(x,y)Q(x,y)/partial x
      Now if you assume that mu(x,y) = phi(x)psi(y)
      Then after calculations assume that
      d phi(x)/phi(x) = f(x)dx
      d psi(y)/psi(y) = g(y)dy
      You have following equatiion for that type of integrating factor
      partial P(x,y)/partial y -partial Q(x,y)/partial x = Q(x,y)f(x) - P(x,y)g(y)
      In Bernoulli equation you have
      (p(x)y - q(x)y^r)dx + dy = 0
      1*f(x) - (p(x)y - q(x)y^r)g(y) = 0
      Now if you let
      f(x) = Ap(x)
      g(y) = B/y
      You will have following equation
      p(x) - rq(x)y^{r-1} = Ap(x) - B(p(x) - q(x)y^{r-1})
      p(x) - rq(x)y^{r-1} = (A - B)p(x) + Bq(x)y^{r-1}
      And you have system of equations for A and B
      A - B = 1
      B = -r
      I skipped some calculations because it is the comment

  • @zzwag
    @zzwag 8 ปีที่แล้ว +1

    Wow thank you so much for this!!

    • @blackpenredpen
      @blackpenredpen  8 ปีที่แล้ว

      zZwag do u think this format is okay? Or u prefer me to write the steps along the way?

    • @Blackfir333
      @Blackfir333 8 ปีที่แล้ว +1

      blackpenredpen It's easier for me to understand when you write the steps as you explain :)

    • @zzwag
      @zzwag 8 ปีที่แล้ว +1

      Hi! Yeah as a student, I find it easier to see the problem without any steps already written out. This way I can take a second to think about the problem before seeing the solution. However either way works fine since you explain concepts really well.

    • @blackpenredpen
      @blackpenredpen  8 ปีที่แล้ว +2

      Thank you both for your inputs. As you can see, even I had the steps on the board already and it still took me 9+ min for this vid. I just wanted to try this format to shorten the vid

  • @dennisivanchavez
    @dennisivanchavez 5 ปีที่แล้ว +1

    blackpenredpenbluepen

  • @tahaabujrad7806
    @tahaabujrad7806 7 ปีที่แล้ว +1

    What if we let the constant equal to inf. ,by doing that we get 1/(f(x)+inf) which is zero .

    • @pranavsuren9489
      @pranavsuren9489 5 ปีที่แล้ว

      Constant shouldn't be infinite
      It never makes sense as you would have infinite as a term. The constant is just some finite real number

  • @JesusGarcia-ox3jj
    @JesusGarcia-ox3jj 8 ปีที่แล้ว +1

    do some reduction order differential equations.

    • @blackpenredpen
      @blackpenredpen  8 ปีที่แล้ว +2

      Here's one
      th-cam.com/video/qw7lsWSkfGA/w-d-xo.html

  • @FarhanAli-dq8eh
    @FarhanAli-dq8eh 7 ปีที่แล้ว +1

    How does (C/e^(-2x)) turn into Ce^(2x)?

  • @rhversity5965
    @rhversity5965 5 ปีที่แล้ว +1

    Wow 0 dislikes first video ive seen that

  • @enochakintoke8634
    @enochakintoke8634 8 หลายเดือนก่อน

    What about the music😢?

  • @pompei2
    @pompei2 ปีที่แล้ว

    Why you do not prove, that missing solutions no any more?

  • @mateusarguelhodacunha8425
    @mateusarguelhodacunha8425 3 ปีที่แล้ว

    nice!

  • @andreguimaraes9347
    @andreguimaraes9347 7 ปีที่แล้ว

    Wouldn't y=0 be part of the family of solutions, since when c->Infinity, y->0???