Number of digits of n!

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ก.พ. 2025

ความคิดเห็น • 130

  • @ju5039
    @ju5039 9 หลายเดือนก่อน +31

    Your talent to explain complex matters in a clear and direct manner is simply unmatched. Thank you for making these lectures.

  • @kenhaley4
    @kenhaley4 3 หลายเดือนก่อน +9

    I wrote a python program to check your final formula. Sadly it fails for the following values of n in the range 1 to 1000:
    96, 97, 98, 99, 100, 101, 102, 103, 122, 139, 190, 233, 241, 261, 331, 380, 415, 431, 445, 497, 583, 596, 624, 629, 634, 655, 716, 723, 789, 799, 821, 833, 861, 897, 921, 958, 959
    In all these cases, your formula calculates one MORE than the actual number of digits in n! I'm guessing these are all edge cases having to do with the Riemann sum approximation.
    Nevertheless, your videos are fantastic, and your presentation method is captivating. Keep up the good work...I love watching you.

  • @Jon60987
    @Jon60987 9 หลายเดือนก่อน +7

    This is an awesome video. A nice follow up would be to take the left, right, and midpoint equations for number of digits, and then display some charts to show how accurate or how inaccurate each of the 3 equations are. As you were clear about, these are all approximations and not exact values. However, one of the other posts which gives a few values shows that you came up with some very nice approximations to the actual values. I found this to be a very impressive demonstration of using Riemann Sums in a way that I would not have come up with on my own.

  • @surendrakverma555
    @surendrakverma555 9 หลายเดือนก่อน +11

    Very good lecture Sir. Thanks 👍

  • @Misteribel
    @Misteribel 8 หลายเดือนก่อน +5

    6:30 you probably want to use the floor function and then add one. Otherwise, it won't work with numbers like 10, 10000 etc. For this exercise, though, the result is the same as we won't get an exact power of 10.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    I enjoy you explaining these problems to everyone listening.

  • @guyneljean-francois4150
    @guyneljean-francois4150 9 หลายเดือนก่อน +3

    For the factorial of the small numbers, you could also rewrite the number as a product of primes (but for the huge numbers like 1000!, it would be boring). For example 5! = 5*4*3*2*1 = 5*3*2^3*1. log(5!)= log(5) +log(3)+3log(2) +log(1) = 2.079
    and ceil(2.079) = 3
    However for the numbers in the form of 10^n, the number of digits seems rather to be (1+n) instead of (log10^n).

  • @murtadhanajem6242
    @murtadhanajem6242 21 วันที่ผ่านมา +1

    I've done some python and when i tried your final formula from x=2 until x=10000 i found that there is 334 number that would result in an error by 1 digit (numbers include 96:103, 122, 139, 190 ...)
    With small adjustment writing
    ln(x+0.419) instead of ln(x+0.5)
    This would reduce the error to 0 instead of 334
    Of course this isn't some perfect formula but i think it is nice that it has no errors at all for all numbers below 10000

  • @NormanicusDiabolicus
    @NormanicusDiabolicus 9 หลายเดือนก่อน +2

    I really enjoy all your videos so clearly and lucidly explained. However, I cannot understand the logic used in this video. 1000! is clearly a product of 1000 discrete integer terms; yet you are employing an integration between two limits( n and 1) which is only valid for continuous functions. Using the gamma function is surely invalid for factorials of integers?

    • @PrimeNewtons
      @PrimeNewtons  9 หลายเดือนก่อน

      I claimed I was using the shifted gamma function, which is continuous.

    • @NormanicusDiabolicus
      @NormanicusDiabolicus 9 หลายเดือนก่อน +2

      @@PrimeNewtons Yes , but 1000! is the product of discrete integers , so why is using the continuous gamma function valid? It's like using Integration of x between 1 and 100 to determine the sum of all consecutive integers from 1 to 100 , instead of 100(100+1)/2

    • @NormanicusDiabolicus
      @NormanicusDiabolicus 9 หลายเดือนก่อน

      My replies have been deleted!!

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน

      @@NormanicusDiabolicus Rather shadow banned by youtube (esp. if you comment contained a lot of digits and/or math symbols).

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน

      Normally you still can find all your shadow banned comments intact in the Comments section of you youtube History.

  • @JesseBusman1996
    @JesseBusman1996 9 หลายเดือนก่อน +40

    The ceil of log10 doesn't work to get the amount of digits of numbers like 10^n; for example ceil(log10(1000)) gives 3 digits which is wrong
    So I think it should be 1+floor(log10(n))

    • @PrimeNewtons
      @PrimeNewtons  9 หลายเดือนก่อน +28

      You're correct. I was blind sided by the fact that no factorial is 10^n.

    • @sanskarvirat2844
      @sanskarvirat2844 9 หลายเดือนก่อน

      ​@@PrimeNewtonsI laughed for quite a while. Good videos

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน +3

      @@PrimeNewtons > no factorial is 10^n
      Objection! 9.4456089! = 10⁶ - we already know how to evaluate non-integer factorials. No *integer* factorial is 10ⁿ.
      *NB* this is supposed to be a joke, so that nobody in the comments gets confused.

    • @iqtrainer
      @iqtrainer 9 หลายเดือนก่อน

      @@allozovskyYeah you are just negative and meaninglessly objecting everything. You def seem to be ill

    • @iqtrainer
      @iqtrainer 9 หลายเดือนก่อน

      @@allozovskyYeah you are objecting again. Blah blah blah

  • @adw1z
    @adw1z 9 หลายเดือนก่อน +8

    Small point: in your summations, I believe the upper limit should be x and the dummy variable as n

    • @sammtanX
      @sammtanX 9 หลายเดือนก่อน

      I thought about the same thing, but would it be different for the result of the integral?

    • @adw1z
      @adw1z 9 หลายเดือนก่อน

      @@sammtanX yes same goes for the integral too, as we want it as a function of x like the LHS

  • @futuregenerationinstitute9613
    @futuregenerationinstitute9613 9 หลายเดือนก่อน +2

    Could you please drop another one showing parallelogram properties using diagonals and their formulas in terms of perimeter, area, and the side lengths. Thank you.

  • @allozovsky
    @allozovsky 9 หลายเดือนก่อน +5

    But following the logic in the video, in order to "stick in the middle" we have to shift *both* limits of integration by one half, not just the upper one, so the final formula would be
    log₁₀(n!) ≈ [x·(ln(x)−1)/ln(10)] at [x₀; x₁] = [1.5; n+0.5]
    = [(n+0.5)·(ln(n+0.5)−1) − 1.5·(ln(1.5)−1)]/ln(10)
    ≈ [(n+0.5)·(ln(n+0.5)−1) + 0.8918]/ln(10)
    so the number of decimal digits of n! is
    log₁₀(n!) ≅ ⌊((n+0.5)·(ln(n+0.5)−1) + 0.8918)/ln(10)⌋ + 1
    This minor change significantly decreases the number of errors (by roughly 2.5 to 3 times), but nevertheless errors still occur (at a rate of about 1.3%, that is ≈13 cases out of every 1000), but that's probably the best we can do with this approach.

  • @FrostNapCat
    @FrostNapCat 3 หลายเดือนก่อน

    Never understand what the log() function does until now. Thank you very much

  • @Arkapravo
    @Arkapravo 9 หลายเดือนก่อน +10

    Very nice, you could have used Stirling's approximation directly

    • @guyneljean-francois4150
      @guyneljean-francois4150 9 หลายเดือนก่อน +4

      Sterling's approximation could give you an estimate of the factorial of the number but not the number of digits. Then, you'll need to count after and in the case of the huge numbers like 1000, the calculator won't be able to display the calculus.

    • @Arkapravo
      @Arkapravo 9 หลายเดือนก่อน

      @@guyneljean-francois4150hmmmm.... n^n becomes the nonsense bit. I agree with you.

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน +3

      But you can use the logarithm of the approximation instead:
      log(n!) ≈ (n·ln(n) − n + ln(2πn)/2)/ln(10)
      That would give much smaller values.
      This is almost our formula from the video, but with a better correction term.

    • @hejjakaroly5850
      @hejjakaroly5850 9 หลายเดือนก่อน +2

      @@allozovsky Yes, this formula is far more accurate. I didn't find a single error up to n = 1 000 000.

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน +1

      @@hejjakaroly5850 So for any practical purposes (as though there may be any practical purpose in determining the number if decimal digits in a factorial) we may safely use this approximation.

  • @sckani3432
    @sckani3432 13 วันที่ผ่านมา

    Nice, sir. S Chitrai Kani

  • @liulmesfin-d5f
    @liulmesfin-d5f 9 หลายเดือนก่อน

    This is amazing. Please don't stop these videos

  • @רובימהאנדרואיד
    @רובימהאנדרואיד 9 หลายเดือนก่อน +35

    Amazing. May I ask? As u mentioned 5 doesn't work. Why?

    • @liammoore1066
      @liammoore1066 9 หลายเดือนก่อน +14

      I believe it is just to do with that the fact that the integral of the Riemann summation is an approximation. I’m guessing that because 5! is one of the first numbers to add another digit (120) and it only passes 100 by 20 it probably failed due to this. Lmk if anyone else has thoughts on this I may be wrong.

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน +4

      Neither the original nor the "shifted by one half" formula works for all natural numbers. For example, 96! has 150 decimal digits, but the shifted formula yields 151. And there are as much as 37 such whole numbers among the first one thousand. So it's rather a miracle that it did work for 1000!

    • @justrandomthings8158
      @justrandomthings8158 9 หลายเดือนก่อน +5

      963/1000 doesn’t sound very miraculous but what do I know

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน +3

      @@justrandomthings8158 We missed the nearest "wrong" number by 41, so we aimed well.

    • @liammoore1066
      @liammoore1066 9 หลายเดือนก่อน +1

      Does anyone know why he chose to shift by 1/2? I didn’t understand that since the integral is an infinite amount of rectangles. Was it just so 1000 would work

  • @insteresting
    @insteresting หลายเดือนก่อน

    Nice work, but the formula gives an estimation of what the number of digits is, not exactly the actual number, since it fails for some values of n (not only n = 5).

  • @guyneljean-francois4150
    @guyneljean-francois4150 9 หลายเดือนก่อน +4

    Based upon my first comment, to be general, the number of digits of n is equal to (1+ floor(log(n) )

  • @temporarytemporary-fh2df
    @temporarytemporary-fh2df 9 หลายเดือนก่อน +1

    Stirling formula calculates the exact number of digits and the exact frontmost digits it is super useful.

  • @davidmexicotte9862
    @davidmexicotte9862 5 หลายเดือนก่อน

    You need to start a site and sell your hats! Great channel.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +1

    Your gifted!

  • @gp-ht7ug
    @gp-ht7ug 9 หลายเดือนก่อน

    If you say that x! is continuous function, why don’t you use the integral of the Π(x) function for the factorial?

  • @barryzeeberg3672
    @barryzeeberg3672 4 หลายเดือนก่อน

    Can you use Stirling approximation?

  • @milindsarkar6961
    @milindsarkar6961 8 หลายเดือนก่อน

    Great sir. ❤

  • @nothingbutmathproofs7150
    @nothingbutmathproofs7150 9 หลายเดือนก่อน +2

    Very nice. At the bottom of the 2nd board I wouldn't have put an equal sign.

  • @boguslawszostak1784
    @boguslawszostak1784 9 หลายเดือนก่อน

    In the 13th minute, you placed an equal sign between the first expression at the top of the board and the result obtained, but in the second row, it is not an equality but an approximation.

  • @omarito8955
    @omarito8955 หลายเดือนก่อน

    i understood your explanation but i am not sure about the ceilling fonction cuz imagine we get 9.1 for example, it conains 1 digit but if we take it s ceilling that will be 10 wich it has 2 digits. Maybe i just didn't understand i hope if someone could explain if i am wrong

  • @ironfbody
    @ironfbody 3 หลายเดือนก่อน

    Could (should) have used Simpson's rule for the integral ?

  • @johnka5407
    @johnka5407 9 หลายเดือนก่อน +1

    The system with logarithms at the beginning doesn’t work for the powers of 10, ceiling(log(10)) is 1, but 10 has 2 digits. I think floor(log(x)) + 1 would be better.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +2

    1000! Has 2568 digits in it.

  • @hcgreier6037
    @hcgreier6037 วันที่ผ่านมา

    Your videos are great, thx!
    Small writing error at 15:07, the +1 stands inside of the ceiling function!
    I used a CAS to evanluate 1000!, and it says the number of digits of 1000! is 2568. Plugging (1000+1/2) into your derived formula, one gets 2569, so it's only one digit off. Calculating with the offset of (1000-1/2), one gets 2566 digits, so it's 2 digits off. The +1/2 adjustment overshoots by 1 digit.
    n! actual formula
    990 2538 2539
    991 2541 2542
    992 2544 2545
    993 2547 2548
    994 2550 2551
    995 2553 2554
    996 2556 2557
    997 2559 2560
    998 2562 2563
    999 2565 2566
    1000 2568 2569
    1001 2571 2572
    1002 2574 2575
    ...

  • @GURPARASSINGH-sg8sv
    @GURPARASSINGH-sg8sv 9 หลายเดือนก่อน +4

    2:48
    Vsuace reference
    I gotchu😂😂

    • @Orillians
      @Orillians 9 หลายเดือนก่อน

      How?

  • @sammtanX
    @sammtanX 9 หลายเดือนก่อน +1

    the great thing is, if you put log_10(x!) = (x ln(x) - x + 1)/ln(10) in desmos, it will just show x = 1.

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน

      Hm, makes perfect sense, though.

  • @chaosredefined3834
    @chaosredefined3834 9 หลายเดือนก่อน +1

    But we can get an indication of if it will fail. Take the case of 5!. As you point out, we want log(5!), which is log(1) + log(2) + log(3) + log(4) + log(5). And we can ignore the 1, so we get log(2) + ... + log(5). At this point, you replace it with an integral, which is an approximation. But if we go for the integral of 1-5, it's going to be smaller. If we go for the integral of 2-6, it's going to be larger. You resolve this at the end by taking the midpoint (1.5 - 5.5). But our underestimate is 1.7577... and our overestimate is 2.3297.... Which tells us that log(5!) is between 1.7577... and 2.3297..., so we don't know what value floor(log(5!)) or ceil(log(5!)) will take (the floor is either 1 or 2, the ceil is either 2 or 3). Compare this to log(4!), which is between 1.1054... and 1.5899..., so we know it's always 1.(something), so floor(log(4!)) = 1, and ceil(log(4!)) = 2.

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน

      @chaosredefined3834 > You resolve this at the end by taking the midpoint (1.5 - 5.5).
      But seems like with our "shifted" formula we are integrating from 1 to n+0.5, not from 1.5. Though there are no obvious reasons why it should work for all n (and in fact it does not).

    • @chaosredefined3834
      @chaosredefined3834 9 หลายเดือนก่อน +1

      @@allozovsky He should have gone from 1.5 to 5.5. That's an error on his part, but the error will be minor.

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน

      The "error" is actually equal to the value of the integral from 1 to 1.5, that is approximately 0.0470 - whether it is small or not is hard to tell, since we still have no measure to estimate it's impact.

    • @chaosredefined3834
      @chaosredefined3834 9 หลายเดือนก่อน

      @@allozovsky Assuming that the logs are evenly distributed (which we don't know, but it's a reasonable assumption), it's an error of 1 in approximately 4.7% of cases. Fortunately, the estimate of logs in the other part is an error in the other direction, so it "should" be ok.

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน

      A shifted formula will not overcome Stirling's approximation anyway, since the latter has a term depending on n, which presumably should provide a better accuracy. The shifted model is too rough.

  • @jetstream_samm
    @jetstream_samm 9 หลายเดือนก่อน

    what would you say, if there at answer was 2567.5 for example ?

  • @temporarytemporary-fh2df
    @temporarytemporary-fh2df 9 หลายเดือนก่อน

    By doing so you'r just rewritung the stirling approx which i do prefer than using it blindly.

  • @amirrozenmanmalach3771
    @amirrozenmanmalach3771 9 หลายเดือนก่อน

    Why do you write the times 1? Does it have some reason?

    • @PrimeNewtons
      @PrimeNewtons  9 หลายเดือนก่อน

      Just a habit

  • @alexdefoc6919
    @alexdefoc6919 9 หลายเดือนก่อน

    Hey, now we need to know how to find the first 2 digits or 3 to put it in scientific notation of x.yz * 10^2568

  • @KahlieNiven
    @KahlieNiven 8 หลายเดือนก่อน

    The power of log (log, not love) will always amaze me.
    From quick calculations (from mind) I found number of digits between 1000 and 3000. (that not solves but helps to find coherent result).
    then formals.
    EDIT : 3 digits x 1000 +1 minus 100 >= 2901 > N > 2x900+something > 1800 (log_10 applied intuitively) ... 100x101..x999x1000 -> at least 2x900 digits.
    (I wasn't sure about the ways to write the log ... ln ? log_e ? log ? in france ln is log_e, log is log_10, log_a is obviously log_a.)

  • @antosandras
    @antosandras 3 หลายเดือนก่อน

    This is a proof for x=n. :) Also for an incorrect (approximate) formula for log (n!).

  • @allozovsky
    @allozovsky 9 หลายเดือนก่อน

    But neither the original nor the "shifted by one half" formula seems to work for all natural numbers. For example, 96! has 150 decimal digits, but the shifted formula yields 151. And there are as much as 37 such whole numbers among the first one thousand. So it's rather a miracle that it did work for 1000!

    • @PrimeNewtons
      @PrimeNewtons  9 หลายเดือนก่อน +1

      Looks like there's another adjustment to be made.

    • @allozovsky
      @allozovsky 9 หลายเดือนก่อน +1

      @@PrimeNewtons Stirling's approximation (when we replace the "+1" term in the original formula by ln(2πn)/2) gives much better results, which is understandable, since now our correction term depends on n, which gives a better approximation.

  • @robot8324
    @robot8324 9 หลายเดือนก่อน

    Thank you !❤

  • @ubahprecious6151
    @ubahprecious6151 2 หลายเดือนก่อน

    You are a boss

  • @zdhshue
    @zdhshue 2 หลายเดือนก่อน

    But why isn’t the sum ln(x-k) for sum from k =0 until n

  • @vitotozzi1972
    @vitotozzi1972 9 หลายเดือนก่อน

    Awesome!!!!

  • @lethalsub
    @lethalsub 9 หลายเดือนก่อน

    Factorise 10, 2*5. 5 is the bigger factor. 1000//5=200, 1000//5**2=40, 1000//5**3=8, 1000//5**4=1, 200+40+8+1=249. 249 zeros at the end of 1000!.

  • @povijarrro
    @povijarrro 9 หลายเดือนก่อน +2

    Nice 1000 seconds long video about 1000!

  • @reekhilchawla3197
    @reekhilchawla3197 4 หลายเดือนก่อน

    awesome

  • @yaronbracha4923
    @yaronbracha4923 9 หลายเดือนก่อน

    I liked it !

  • @stevenshrii
    @stevenshrii 3 หลายเดือนก่อน

    Ln(-1)/sqrt(-1) = pi

  • @Dr_piFrog
    @Dr_piFrog 3 หลายเดือนก่อน

    I'll guess that there are 2568 digits in 1000!. Let me know if true or false.
    Your formula varies from one-off to spot-on values.

  • @Muralimurali-o3n
    @Muralimurali-o3n 4 หลายเดือนก่อน +1

    Only ramanujan can understand this 🥵

  • @SidneiMV
    @SidneiMV 9 หลายเดือนก่อน

    Great!

  • @chivalioum
    @chivalioum 9 หลายเดือนก่อน

    Awesome

  • @klementhajrullaj1222
    @klementhajrullaj1222 9 หลายเดือนก่อน

    How many digits has 2^100?!

    • @cyberagua
      @cyberagua 9 หลายเดือนก่อน +1

      But that's easy: floor[100×log(2)] + 1 = 31

  • @aminsheykh7057
    @aminsheykh7057 9 หลายเดือนก่อน

    Your videos are amazing👍

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 6 หลายเดือนก่อน +2

    1000! Has 2,568 digits

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 6 หลายเดือนก่อน +1

    5!=120

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 5 หลายเดือนก่อน +1

    1000! has 2,568 digits in it

  • @WhiteGandalfs
    @WhiteGandalfs 9 หลายเดือนก่อน

    When taking the simple integral, we arrive at about 2566 digits. When asking Wolfram Alpha about the exact product, it spits out 2568 digits. So this method demonstrated here (giving 2568) is a pretty exact one. That little correction appendix is the usual way how engineers tend to tackle such things :D

  • @wildfire_
    @wildfire_ 3 หลายเดือนก่อน

    4!

  • @cyrusrosales3127
    @cyrusrosales3127 9 หลายเดือนก่อน

    smart

  • @dirklutz2818
    @dirklutz2818 9 หลายเดือนก่อน

    Fantastic lesson.

  • @lubiemuze6368
    @lubiemuze6368 9 หลายเดือนก่อน

    Three😂

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 3 หลายเดือนก่อน +1

    I love math.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 2 หลายเดือนก่อน +2

    How many digits are in 1000! There’s 2319 digits in it trailing 249 zeros at the end. 1000!=402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

  • @Bheeshma-l2g
    @Bheeshma-l2g หลายเดือนก่อน

    👍👍👍👍

  • @robot8324
    @robot8324 9 หลายเดือนก่อน

    Thank you !❤