6.2 - Orthogonal Sets

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น •

  • @alejandrochavarriagonzalez7024
    @alejandrochavarriagonzalez7024 8 หลายเดือนก่อน

    I love the idea of using my past Calc 3 knowledge to linear algebra now, I hope we get into some applications

  • @panagiotiskyriakou3866
    @panagiotiskyriakou3866 5 หลายเดือนก่อน +1

    "when i said 4, i meant 3" had me dead ngl 😂😂

  • @Elijah_Hoenig
    @Elijah_Hoenig ปีที่แล้ว

    So would it be fair to consider the orthonormal/vector relationship the "opposite" of a matrix/eigenvector relationship, where orthonormal matrices change direction without changing magnitude while a matrix with its eigenvectors changes magnitude without changing direction.

    • @paulcartie3820
      @paulcartie3820  ปีที่แล้ว

      This is a test to see if my reply is added to your comment.

  • @sarahstets
    @sarahstets 7 หลายเดือนก่อน

    This class makes me want to take abstract algebra even though unsure if could ever fit that in a schedule without going over 4 years for a bachelor’s…

  • @YasinFarid04
    @YasinFarid04 7 หลายเดือนก่อน

    It is interesting how the inverse of the orthogonal matrix it's transpose

  • @pringles1978
    @pringles1978 2 ปีที่แล้ว

    in 22:50 , could that at any chance mean that U(t) = U(-1) ?

    • @mazmillion451
      @mazmillion451 ปีที่แล้ว

      No. U is orthonormal, meaning that dotting each respective vector (which is equivalent to matrix multiplication of transpose) produces a value of 1, which is the equivalent to saying the length of the vectors in col{U} (or equivalently row{U}) is 1 (hence, normal/normalized).