Math problem, that frightened 98% of examinees

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ม.ค. 2025

ความคิดเห็น • 32

  • @raghvendrasingh1289
    @raghvendrasingh1289 22 วันที่ผ่านมา +4

    (x^2 - 3)^2 = x+3
    (x^2 - 3)^2 - x^2 = x+3 - x^2
    (x^2 - 3+x) (x^2 - 3- x)+(x^2 - x- 3) = 0
    (x^2 - x - 3) (x^2+x-2) = 0
    (x^2 - x -3) (x+2)(x - 1) = 0
    x = (1+√13)/2 , (1 - √13)/2 , - 2 , 1
    x = (1+√13)/2 , - 2
    other two roots are extraneous.

  • @tav689
    @tav689 22 วันที่ผ่านมา +10

    You made a mistake in your final check, it should be sgrt(-2+3) not sqrt(-2+1), which would have created i, not sqrt(1) = 1.

  • @boeubanks7507
    @boeubanks7507 22 วันที่ผ่านมา +5

    The conditions you set at the beginning only apply if you are limiting the solutions to the real numbers. Imaginary solutions are perfectly valid generally. A quartic equation should have four roots and typically two are imaginary.

    • @fadetoblah2883
      @fadetoblah2883 22 วันที่ผ่านมา +2

      Except the original equation is not a quartic. It only becomes one because we square both sides to facilitate solving, thus creating the possibility of two extraneous solutions. Note also that neither of the solutions that were rejected [x=1 and x=(1-√13)/2] are imaginary, they really are just extraneous solutions that do not apply to the original equation. For example, if you plug x=1 into x²-3=√(x+3), you end up with this obviously faulty statement: -2=2. If instead you plug in (1-√13)/2, you end up with similar nonsense.

  • @tombratcher6938
    @tombratcher6938 22 วันที่ผ่านมา +2

    But... -why- did you decide t=3. Watching this, the algebra was set out slowly but the magic step was just "let's now do this inexplicably clever thing that happens to work" and never touched on again

  • @mohammedeissa2248
    @mohammedeissa2248 23 วันที่ผ่านมา +6

    that piece of hair got me 😅

  • @KingKhan-xd8kf
    @KingKhan-xd8kf 22 วันที่ผ่านมา +1

    When you are afraid of a question by appearance. Simple factor would have made it so much more easier....

  • @prollysine
    @prollysine 22 วันที่ผ่านมา +2

    we get , x^4+/-x^3-6x^2-x+6=0 , (x-1)(x^3+x^2-5x-6)=0 , / x=1 , not a solu , /
    1 -1 x^3+x^2-5x-6=0 , (x+2)(x^2-x-3)=0 , x= -2 , test , (-2)^2-3=1 , V(-2+3)=1 , same , OK ,
    1 -1 1 2 x^2-x-3=0 , x= (1+V13)/2 , / (1-V13)/2 , not a solu / , ,
    -5 5 -1 -2 test x=(1+V13)/2 , (1+V13)/2=(1+V13)/2 , same , OK ,
    -6 6 -3 -6 solu , x= -2 , (1+V13)/2 ,

  • @cyruschang1904
    @cyruschang1904 20 วันที่ผ่านมา +1

    x^2 - 3 = √(x + 3)
    x^4 - 6x^2 + 9 = x + 3
    x^4 - 6x^2 - x + 6 = 0
    (x - 1)(x^3 + x^2 - 5x - 6) = 0
    (x - 1)(x + 2)(x^2 - x - 3) = 0
    x = -2, (1 +/- √13)/2

    • @thierrygermain5182
      @thierrygermain5182 16 วันที่ผ่านมา

      C'est ma propre solution, tellement plus simple et convaincante !
      Au plan des IDEES :
      1. Notez que SEULE la condition x^2 - 3 > 0 est nécessaire et élimine les SOLUTIONS ETRANGERES. La condition "x + 3 > 0" est AUTOMATIQUEMENT satisfaite par l'élévation au carré.
      2. Quant aux solutions entières apparentes du polynôme x4 - 6x2 - x - 6, elles doivent NECESSAIREMENT diviser (au signe près) le coefficient -6. D'où la factorisation par (x-1) puis (x+2).

    • @thierrygermain5182
      @thierrygermain5182 16 วันที่ผ่านมา

      Error when typing : X4 - 6x2 - x +6 , of course...!

    • @cyruschang1904
      @cyruschang1904 16 วันที่ผ่านมา

      @@thierrygermain5182 👌👍😊

  • @paulgavarini9058
    @paulgavarini9058 22 วันที่ผ่านมา +3

    Your solution is not a math reasoning: your choice if t implies that you already know the solution x=-2. You had no reason for this choice unless you knew the answer. If you knew the answer your bla bla bla is waisting our time.

    • @politbuero9532
      @politbuero9532 21 วันที่ผ่านมา

      That's pretty the same I felt....

  • @jaybazu
    @jaybazu 21 วันที่ผ่านมา +1

    Hi I like your method however I did not understand the substitution with t =3 can you please help
    Thanks

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 22 วันที่ผ่านมา

    (x^2)^2 ➖ (3)^2={x^4 ➖ 9}=x^5;x^2^3 (x ➖ 3x+2).{ x+x ➖ }+{3+3 ➖ }={x^2+6}=6x^2 3^3x^2 1^1x^2 1x^2 (x ➖ 2x+1).

  • @djc736120
    @djc736120 21 วันที่ผ่านมา

    Hello. Can you show how to solve this equation without using the Lambert function? 3^(x-2)=x

  • @dudeabideth4428
    @dudeabideth4428 22 วันที่ผ่านมา +1

    1 is an obvious solution?

  • @nataliakhomenko5325
    @nataliakhomenko5325 22 วันที่ผ่านมา +1

    We already did it with one and four and five

  • @ravikiranpalaparthi615
    @ravikiranpalaparthi615 15 วันที่ผ่านมา

    x+3 ≥ 0 ---(1)
    x²-3 ≥ 0---(2)
    (1)---> x ≥ -3 => x = -3 -2, -1, -0, 1, 2, ... So on
    (2) ---> x² ≥ 3 => x² = 4, 5, 6, 7, 8, 9, 10, ....so on
    Let x = -3
    (-3)²-3=9-3=6≠√(-3+3)=0
    x≠-3
    Let x = -2
    (-2)²-3=4-3=1=√(-2+1)=√1=1
    So, x = -2

  • @Rishon-n5j
    @Rishon-n5j 21 วันที่ผ่านมา

    I got this question in my olympiad exam and i didn't know how to solve it : [2^(x-3)] × [3^(2x-8) ]=36 ; find x

  • @francisgrizzlysmit4715
    @francisgrizzlysmit4715 15 วันที่ผ่านมา

    I just solved the quartic in x then tested the solns against the original rejected 2 roots kept 2

  • @BobGillah
    @BobGillah 22 วันที่ผ่านมา +1

    Thank

  • @nataliakhomenko5325
    @nataliakhomenko5325 22 วันที่ผ่านมา

    We are runnung out of figures

  • @SidneiMV
    @SidneiMV 22 วันที่ผ่านมา +2

    √(x + 3) = y
    x + 3 = y²
    x² - 3 = y
    x² + x = y² + y
    (x² - y²) + (x - y) = 0
    (x - y)(x + y + 1) = 0
    y = x ∨ y = -(x + 1)
    y = x
    x² - 3 = x => x² - x - 3 = 0
    x = (1 ± √13)/2
    *x = (1 + √13)/2* ∨ x = (1 - √13)/2 (rejected)
    y = -(x + 1)
    x² - 3 = -(x + 1)
    x² + x - 2 = 0
    x = (-1 ± 3)/2
    x = 1 (rejected) ∨ *x = -2*
    ANOTHER WAY
    x² = √(x + 3) + 3
    x⁴ = x + 12 + 6√(x + 3)
    x⁴ = x + 12 + 6(x² - 3)
    x⁴ - 6x² - x + 6 = 0
    x(x³ - 1) - 6(x² - 1) = 0
    x(x - 1)(x² + x + 1) - 6(x - 1)(x + 1) = 0
    x - 1 ≠ 0 => x³ + x² + x - 6x - 6 = 0
    x³ + x² - 5x - 6 = 0
    *x = -2* is a solution (by inspection)
    (x + 2)(x² - x - 3) = 0
    x² - x - 3 = 0 => x = (1 ±√13)/2
    *x = (1 + √13)/2* ∨ x = (1 - √13)/2 (rejected)

    • @gregevgeni1864
      @gregevgeni1864 22 วันที่ผ่านมา +1

      It does work!
      .. x⁴-x-6x²+6=x(x³-1)-6(x²-1)=
      = x(x-1)(x²+x+1)-6(x-1)(x+1)=
      =(x-1)[x(x²+x+1)-6(x+1)]=
      =(x-1)(x³+x²-5x-6)=
      =(x-1)(x³+2x²-x²-2x-3x-6)=
      =(x-1)[x²(x+2)-x(x+2)-3(x+2)]=
      =(x-1)(x+2)(x²-x-3)=0 =>
      x=1 or x=-2 or x=(1±√13)/2.
      Due to constraints x=1 and x=(1-√13)/2 rejected ..
      Solutions x=-2 or x=(1+√13)/2.

    • @SidneiMV
      @SidneiMV 22 วันที่ผ่านมา

      @@gregevgeni1864 yes. I have fixed my "ANOTHER WAY". thanks.

  • @blintzy6969
    @blintzy6969 21 วันที่ผ่านมา

    Are you spanish?

  • @ryanmwaniki6266
    @ryanmwaniki6266 20 วันที่ผ่านมา

    I got - 2

  • @politbuero9532
    @politbuero9532 22 วันที่ผ่านมา +1

    way to complicated and I suppose, the substitution with t is not really needed. after using binomial theorem to expand (x^2-3)^2 and some substractions you get x^4-6x^2−x+6=0. This is a polynomial that is easy to solve.
    .

    • @Pandaphilo
      @Pandaphilo 22 วันที่ผ่านมา

      Trop long et compliqué.
      Est ce qu'il n'y avait pas moyen de faire simple?
      Merci pour les habilités.