Can you solve this Cambridge Entrance Exam Question?

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ม.ค. 2025

ความคิดเห็น • 27

  • @iangordon5354
    @iangordon5354 12 ชั่วโมงที่ผ่านมา +8

    I did it by a much quicker method which also answers your point about how many roots there are.
    1. By inspection, x=2 is a solution.
    2. 3^x is monotone increasing in x
    3. x is monotone increasing in x
    4. Therefore the left side is monotone increasing in x
    5. Therefore x=2 is the only solution (assuming x is a real number, not a complex one).

  • @asbarker31
    @asbarker31 12 ชั่วโมงที่ผ่านมา +7

    x=2. Simples! Cambridge University would never have this as an entrance question unless they placed additional conditions as to how it was to be solved. I used the simplest method - by observation.

    • @outverse_edits
      @outverse_edits 11 ชั่วโมงที่ผ่านมา

      ur method is wrong cuz u cant probe that there is not any solution other than x=2

    • @asbarker31
      @asbarker31 10 ชั่วโมงที่ผ่านมา +1

      The question only asked me to solve it. It did not ask me to find every solution.

    • @outverse_edits
      @outverse_edits 10 ชั่วโมงที่ผ่านมา +2

      @asbarker31
      most statements ask u to find possible values of x

    • @caspianberggren4195
      @caspianberggren4195 10 ชั่วโมงที่ผ่านมา

      ​@@outverse_edits3^x+x-11 is always growing when x>0, x=0 isn't a solution, and always negative when x

    • @asbarker31
      @asbarker31 10 ชั่วโมงที่ผ่านมา +2

      3^x is an increasing function as x increases. 11-x is a decreasing function as x increases. So there can be only one solution in the real numbers.

  • @Penndennis
    @Penndennis 2 ชั่วโมงที่ผ่านมา

    Great demo of method - thank you! Very helpful!

  • @bebopalooblog2877
    @bebopalooblog2877 8 ชั่วโมงที่ผ่านมา +2

    Honestly, x=2 and must be only 2 because above 2 it is too large and below 2 it is too small and it can't be negative or fractional or imaginary for the same reason, which I'm pretty sure is all you have shown, in an obfuscated fashion.

  • @julianociaramello2150
    @julianociaramello2150 6 ชั่วโมงที่ผ่านมา +2

    Is the point of this to find the most elaborate way possible to get a simple answer?

  • @MgtowRubicon
    @MgtowRubicon 9 ชั่วโมงที่ผ่านมา +1

    The solution of x=2 is obvious.
    That is not the point of this video.
    The point is about using the Lambert W function in appropriate situations.

  • @mcwulf25
    @mcwulf25 13 ชั่วโมงที่ผ่านมา +1

    A nice tutorial in how to arrange two expressions into a form that can be reduced by the W function.
    Of course, you don't actually need to know about W, do long as you can rearrange both sides into the form (something) e^(something) and then equating the somethings. There was still an element of guess and check by knowing to break 11 into 9 and 2.
    Alternatively, guess and check quickly gives x=2 and it's siimple to show that the increasing function has just one solution.

  • @guoelit65
    @guoelit65 13 ชั่วโมงที่ผ่านมา +2

    Great solution!!

  • @in-black-space
    @in-black-space 13 ชั่วโมงที่ผ่านมา +2

    .the best math channel in TH-cam

  • @paolopozzobon1822
    @paolopozzobon1822 11 ชั่วโมงที่ผ่านมา

    The solution is x = 2. Indeed, 3^2 = 9 and 9 + 2 = 11.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 3 ชั่วโมงที่ผ่านมา

    {3x+3x ➖ }+{x+x ➖ }={6x^2+x^2}=6x^4 3^3x^2^2 3^1x1^2 3x^2 (x ➖ 3x+2).

  • @josejefferson2812
    @josejefferson2812 7 ชั่วโมงที่ผ่านมา

    There is many theories to solve it.but one could very easily rea ch the solution by putting x=2.

  • @Nightmarebon
    @Nightmarebon 10 ชั่วโมงที่ผ่านมา

    How is that suppose to be hard

  • @ainamanicolleb
    @ainamanicolleb 13 ชั่วโมงที่ผ่านมา

    Can it be solved by another method?

    • @mcwulf25
      @mcwulf25 13 ชั่วโมงที่ผ่านมา

      Guess and check. Then demonstrating there can be only one solution.

  • @전상민-n2e
    @전상민-n2e 14 ชั่วโมงที่ผ่านมา

    👍👍

  • @Miguel10111948
    @Miguel10111948 14 ชั่วโมงที่ผ่านมา +2

    Impressive!!!

  • @KaineGlitch870
    @KaineGlitch870 12 ชั่วโมงที่ผ่านมา

    2

  • @themieljadida4459
    @themieljadida4459 13 ชั่วโมงที่ผ่านมา +1

    Nul

  • @Miguel10111948
    @Miguel10111948 14 ชั่วโมงที่ผ่านมา

    Impressive!!!