A Trigonometric Exponential Equation

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 พ.ย. 2024

ความคิดเห็น • 21

  • @MrLidless
    @MrLidless ปีที่แล้ว +6

    Expand the sin2x, then take the cos root of both sides to 2^(2sinx) = 7, but the max the LHS can be is 4, so no real solutions when cosx0

  • @RexxSchneider
    @RexxSchneider ปีที่แล้ว +1

    For the solutions where cosx is not zero:
    sinx = log7/log4 (for any reasonable base of logarithms)
    We can set sinx = (e^(ix) - e^(-ix)) / 2i.
    Let y = e^(ix), so x = -i.ln(y)
    Now sinx = (y - 1/y) / 2i
    So (y - 1/y) / 2i = log7 / 2log2
    y - 1/y = i.log7/log2
    Let c = log7/2log2 = log7/log4
    So y - 1/y = 2ic
    y^2 - 2icy - 1 = 0
    y = (2ic ± √(-4c^2 + 4))/2
    y = ic ± √(-c^2 + 1) = ic ± i√(c^2 - 1) = i(c ± √(c^2 - 1)
    x = -i.ln( i.(c ± √(c^2 - 1)) ) where c = log7/log4
    You were probably right to use Wolfram Alpha.

  • @scottleung9587
    @scottleung9587 ปีที่แล้ว +10

    Whoopsies, I cancelled out the cosines!

    • @antenym8947
      @antenym8947 ปีที่แล้ว +1

      I did that and it didnt work bruuuuh.

  • @goldfing5898
    @goldfing5898 ปีที่แล้ว +2

    Addition theorem: sin(2x) = 2 * sin(x) * cos(x), so we can rewrite
    2^(2*sin(x)*cos(x)) = 7^cos(x)
    (((2^2)^sin(x))^cos(x) = 7^cos(x)
    (4^sin(x))^cos(x) = 7^cos(x)
    Exponent comparison:
    4^sin(x) = 7
    But is this unique?
    sin(x) = log_4_(7)
    To be continued...

    • @georgesbv1
      @georgesbv1 ปีที่แล้ว +1

      Or cos(x) =0

    • @goldfing5898
      @goldfing5898 ปีที่แล้ว

      @@georgesbv1 Yes, indeed.

    • @rakenzarnsworld2
      @rakenzarnsworld2 ปีที่แล้ว

      @@goldfing5898 I literally done this for nothing other than finding cos(x) = 0 lol
      log 2 = 0.301
      log 7 = 0.8451
      sin(2x) = 0.8451
      cos(x) = 0.301
      Let me do some approximations:
      sin(1/36)pi = 0.0872
      sin(2/36)pi = 0.1736
      sin(3/36)pi = 0.2588
      sin(4/36)pi = 0.342
      cos(x) is larger than sin(3/36)pi but smaller than sin(4/36)pi
      sin(5/36)pi = 0.4226
      sin(6/36)pi = 0.5
      sin(7/36)pi = 0.5736
      sin(8/36)pi = 0.6428
      sin(9/36)pi = 0.7071
      sin(10/36)pi = 0.766
      sin(11/36)pi = 0.8192
      sin(12/36)pi = 0.866
      sin(2x) is larger than sin(11/36)pi but smaller than sin(12/36)pi
      sin(12/36)pi = sin(24/36)pi, sin(11/36)pi = sin(25/36)pi
      cos(n/36)pi = sin{(n+18)/36}pi
      sin{x+(18/36)pi} = 0.301
      cos(12/36)pi = 0.5
      sin(37/36)pi = -0.0872
      sin(38/36)pi = -0.1763
      ...
      sin(50/36)pi = -0.9397
      sin(51/36)pi = -0.9659
      sin(52/36)pi = -0.9848
      sin(53/36)pi = -0.9962
      sin(54/36)pi = -1
      cos(21/36)pi = -0.2588
      cos(22/36)pi = -0.342
      ...
      cos(50/36)pi = -0.342
      cos(51/36)pi = -0.2588
      cos(50/36)pi = cos(122/36)pi = cos(94/36)pi, cos(51/36)pi = cos(123/36)pi = cos(93/36)pi
      sin(48/36)pi = -sin(12/36)pi, sin(47/36)pi = -sin(11/36)pi
      sin^2(x)+cos^2(x)=1
      sin^2(2x)+cos^2(2x)=1
      0.8451^2 = 0.71419401
      0.301^2 = 0.090601
      log2(7) = 2.8074
      sin(2x) = 2.8074sin{x+(18/36)pi}
      2cos(x)sin(x) = 2.8074cos(x)
      cos(x)sin(x) = 1.4037cos(x)
      sin(x) = 1.4037
      However, sin(x) cannot be larger than 1
      sin(2x) = cos(x) = 0
      sin(x) = 0
      x = 1.5708 + (n)pi
      n is integer

  • @gergelymadar4647
    @gergelymadar4647 ปีที่แล้ว +2

    sin(2x)=2cos(x)sin(x).
    From here, we have 4^sin(x)cos(x)=7^cos(x).
    (4^sin(x))^cos(x)=7^cos(x).
    If cos(x)=0, x=1/2π+kπ, which is a solution, so we have one solution.
    4^sin(x)=7
    Log⁴(7)>|1|, so we have no more solutions. Hence, x=1/2π+kπ

    • @carly09et
      @carly09et ปีที่แล้ว

      Using log base 4 is neat.

  • @juandavidjurado3738
    @juandavidjurado3738 ปีที่แล้ว

    Thanks 👍🏻

  • @seanfraser3125
    @seanfraser3125 ปีที่แล้ว +3

    Using sin(2x) = 2sinxcosx, we have
    4^(sinx*cosx) = 7^cosx
    Taking the log of both sides we get
    sinx*cosx*log4 - cosx*log7 = 0
    Or,
    cosx(log4sinx - log7) = 0
    One family of solutions is when cosx = 0, or when x = pi/2 + pi*n for any integer n.
    The other factor gives sinx = log7/log4 = log_4(7) > 1. But sinx can never be larger than 1, so this gives no (real) solutions.
    So the only real solutions are the zeroes of cosx, or the odd integer multiples of pi/2
    EDIT: Side note, I didn’t specify which base of log I used. Notice that it doesn’t matter as long as you choose one which is well-defined, since we eventually take a ratio anyway.

  • @rakenzarnsworld2
    @rakenzarnsworld2 ปีที่แล้ว

    log 2 = 0.301
    log 7 = 0.8451
    sin(2x) = 0.8451
    cos(x) = 0.301
    Let me do some approximations:
    sin(1/36)pi = 0.0872
    sin(2/36)pi = 0.1736
    sin(3/36)pi = 0.2588
    sin(4/36)pi = 0.342
    cos(x) is larger than sin(3/36)pi but smaller than sin(4/36)pi
    sin(5/36)pi = 0.4226
    sin(6/36)pi = 0.5
    sin(7/36)pi = 0.5736
    sin(8/36)pi = 0.6428
    sin(9/36)pi = 0.7071
    sin(10/36)pi = 0.766
    sin(11/36)pi = 0.8192
    sin(12/36)pi = 0.866
    sin(2x) is larger than sin(11/36)pi but smaller than sin(12/36)pi
    sin(12/36)pi = sin(24/36)pi, sin(11/36)pi = sin(25/36)pi
    cos(n/36)pi = sin{(n+18)/36}pi
    sin{x+(18/36)pi} = 0.301
    cos(12/36)pi = 0.5
    sin(37/36)pi = -0.0872
    sin(38/36)pi = -0.1763
    ...
    sin(50/36)pi = -0.9397
    sin(51/36)pi = -0.9659
    sin(52/36)pi = -0.9848
    sin(53/36)pi = -0.9962
    sin(54/36)pi = -1
    cos(21/36)pi = -0.2588
    cos(22/36)pi = -0.342
    ...
    cos(50/36)pi = -0.342
    cos(51/36)pi = -0.2588
    cos(50/36)pi = cos(122/36)pi = cos(94/36)pi, cos(51/36)pi = cos(123/36)pi = cos(93/36)pi
    sin(48/36)pi = -sin(12/36)pi, sin(47/36)pi = -sin(11/36)pi
    sin^2(x)+cos^2(x)=1
    sin^2(2x)+cos^2(2x)=1
    0.8451^2 = 0.71419401
    0.301^2 = 0.090601
    log2(7) = 2.8074
    sin(2x) = 2.8074sin{x+(18/36)pi}
    2cos(x)sin(x) = 2.8074cos(x)
    cos(x)sin(x) = 1.4037cos(x)
    sin(x) = 1.4037
    However, sin(x) cannot be larger than 1
    sin(2x) = cos(x) = 0
    sin(x) = 0
    x = 1.5708 + (n)pi
    n is integer

  • @VVv-ix2gx
    @VVv-ix2gx ปีที่แล้ว

    1.5708 suspiciously looks like Pi/2

  • @samvelhovhannisyan795
    @samvelhovhannisyan795 ปีที่แล้ว

    x=pi/2 + pi*n

  • @wearehumans3734
    @wearehumans3734 ปีที่แล้ว +1

    Take, sin2x = cosx,
    2sinxcosx=cosx
    2sinx=1
    Sinx=½
    X=30°

  • @neuralwarp
    @neuralwarp ปีที่แล้ว

    You mis-spelt 7

  • @broytingaravsol
    @broytingaravsol ปีที่แล้ว

    x=(4k±1)π/2

    • @georgesbv1
      @georgesbv1 ปีที่แล้ว

      that logarithm is larger than 1

    • @broytingaravsol
      @broytingaravsol ปีที่แล้ว +1

      @@georgesbv1 i've amended

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว +1

    Ho suluzioni per cosx=0 e per sinx=log(4)7 no real