Nontransative dice

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 พ.ย. 2024

ความคิดเห็น • 3

  • @WesHawkins0
    @WesHawkins0 11 วันที่ผ่านมา

    Cool! Very interesting, thanks for sharing

  • @uhpkkim
    @uhpkkim 11 วันที่ผ่านมา

    Ooooh this is neat and I have no idea how it popped up in my algo. Was it a coincidence that the colors and relationships mirror the pokemon starter trio

  • @davidmurphy563
    @davidmurphy563 13 วันที่ผ่านมา

    That was an outstanding video. Hats off. But why does it work... Let's show it as a matrix:
    red = (0, 3, 1, 0, 0, 2)
    blue = (1, 0, 2, 2, 0, 1)
    green = (2, 0, 0, 1, 3, 0)
    So in reduced row echelon form it's:
    1, 2, 0
    0, -6, 0
    0, 0, 2
    0, 0, 0
    0, 0, 0
    0, 0, 0
    Huh, that's interesting. So the determinant of the rank 3 matrix is -12 and there are three eigenvalues! -6, 2 and 1. And there's your explanation. Amazing. So if I've done the maths right the eigenvectors are (-2, 7, 0), (0, 0, 1) and (1, 0, 0). Simple as that.
    How cool is that?