Cambridge University Entrance Exam Tricks Probably Never Knew Existed!✍️🖋️📘💙

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ธ.ค. 2024

ความคิดเห็น • 5

  • @9허공
    @9허공 12 ชั่วโมงที่ผ่านมา +1

    DOMAIN of x for real solutions is 1/7 ≤ x < 3 or x > 4
    from 4:36 f(x) = x^4 - 7x^3 + 12x^2 - 7x + 1,
    since f(1) = 0 , f(x) = (x - 1)g(x) = (x - 1)(x^3 - 6x^2 + 6x - 1) using SDM
    since g(1) = 0 , f(x) = (x - 1)g(x) = (x - 1)(x -1)(x^2 - 5x + 1) using SDM
    x = { 1, (5 + √21)/2, (5 - √21)/2 } within the domain

    • @에스피-z2g
      @에스피-z2g 5 ชั่วโมงที่ผ่านมา

      Excellent

  • @mmk9456aust
    @mmk9456aust วันที่ผ่านมา +1

    x⁴-7x²+6x²+6x²+1=0
    x²(x-1)(x-6)+(6x-1)(x-1)=0
    either x=1 or
    x³-6x²+6x-1=0
    (x³-1)-6x(x-1)=0
    (x-1)(x²+x+1)-6x(x-1)=0
    (x-1)(x²-5x+1)=0
    either x=1
    or x =(5±√21)/2

  • @key_board_x
    @key_board_x 21 ชั่วโมงที่ผ่านมา

    Condition
    [27/(x - 4)] - [20/(x - 3)] ≥ 0
    [27.(x - 3) - 20.(x - 4)] / [(x - 4).(x - 3)] ≥ 0
    [27x - 81 - 20x + 80] / [x² - 3x - 4x + 12] ≥ 0
    (7x - 1) / (x² - 7x + 12) ≥ 0
    (7x - 1) ← root: 1/7
    x² - 7x + 12 → Δ = 49 - 48 = 1
    x = (7 ± 1)/2
    x = 4 ← root
    x = 3 ← root
    x - ∞ 1/7 3 4 +∞
    (7x - 1) - 0 + + +
    (x² - 7x + 12) + + 0 - 0 +
    sign - 0 + II - II +
    x ⋲ [1/7 ; 3 [ U ] 4 ; +∞ [
    x = √{ [27/(x - 4)] - [20/(x - 3)] }
    x = √{ [27.(x - 3) - 20.(x - 4)] / [(x - 4).(x - 3)] }
    x = √{ [27x - 81 - 20x + 80] / [x² - 3x - 4x + 12] }
    x = √[(7x - 1)/(x² - 7x + 12)]
    x² = (7x - 1)/(x² - 7x + 12)
    x².(x² - 7x + 12) = 7x - 1
    x⁴ - 7x³ + 12x² = 7x - 1
    x⁴ - 7x³ + 12x² - 7x + 1 = 0
    (x⁴ + 12x² + 1) - (7x³ + 7x) = 0 ← you can see that (x = 1) is an obvious solution
    x⁴ - 7x³ + 12x² - 7x + 1 = 0 → so, we can factorize (x - 1)
    (x - 1).(x³ + βx² + λx - 1) = 0 → you expand
    x⁴ + βx³ + λx² - x - x³ - βx² - λx + 1 = 0 → you group
    x⁴ + (β - 1).x³ + (λ - β).x² - x.(1 + λ) + 1 = 0 → we compare with: x⁴ - 7x³ + 12x² - 7x + 1 = 0
    For x³ → (β - 1) = - 7 → β = - 6
    For x² → (λ - β) = 12 → λ = 12 + β → λ = 6
    For x → (1 + λ) = 7 → λ = 6 (of course because above)
    (x - 1).(x³ + βx² + λx - 1) = 0 → you it becomes
    (x - 1).(x³ - 6x² + 6x - 1) = 0
    (x - 1).[x³ - 1 - (6x² - 6x)] = 0
    (x - 1).[(x³ - 1³) - 6x.(x - 1)] = 0 → recall: a³ - b³ = (a - b)(a² + ab + b²)
    (x - 1).[(x - 1).(x² + x + 1) - 6x.(x - 1)] = 0
    (x - 1).[(x - 1).(x² + x + 1 - 6x)] = 0
    (x - 1).(x - 1).(x² - 5x + 1) = 0
    (x - 1)².(x² - 5x + 1) = 0
    First case: (x - 1) = 0
    x - 1 = 0
    → x = 1
    Second case: (x² - 5x + 1) = 0
    x² - 5x + 1 = 0
    Δ = (- 5)² - (4 * 1) = 25 - 4 = 21
    → x = (5 ± √21)/2