A superb limit problem: lim {x \to 0} (x!)^(1/x)

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ธ.ค. 2024

ความคิดเห็น • 86

  • @edmundwoolliams1240
    @edmundwoolliams1240 2 หลายเดือนก่อน +70

    Nice! I'm not too surprised the Oily-Macaroni constant came out

    • @yplayergames7934
      @yplayergames7934 2 หลายเดือนก่อน +12

      The most delicious constant in math

    • @Grecks75
      @Grecks75 หลายเดือนก่อน +1

      Oily-Macaroni, lol 🤣🤣🤣 Never heard that before!

  • @CM63_France
    @CM63_France 2 หลายเดือนก่อน +32

    Hi,
    "Ok, cool" : 0:13 , 2:20 , 5:38 ,
    "terribly sorry about that" : 1:56 .

    • @renerpho
      @renerpho 2 หลายเดือนก่อน +4

      Thank you for your service 🫡

    • @maths_505
      @maths_505  2 หลายเดือนก่อน +6

      Not the hero we deserve, but the one we need

    • @yplayergames7934
      @yplayergames7934 2 หลายเดือนก่อน

      Deep thoughts... from a deep guy

  • @waarschijn
    @waarschijn 2 หลายเดือนก่อน +35

    lim (ln x! - ln 0!) / (x-0) is literally the definition of ψ'(1)

    • @Mathguy1729
      @Mathguy1729 2 หลายเดือนก่อน +11

      Ψ(1)*

    • @waarschijn
      @waarschijn 2 หลายเดือนก่อน +2

      @@Mathguy1729 oh right, thanks

    • @Grecks75
      @Grecks75 หลายเดือนก่อน

      Good observation. 👍

  • @felipegiglio2047
    @felipegiglio2047 2 หลายเดือนก่อน +17

    Your solution has some (significant) flaws. By which I mean they're not so easy to fix.
    At the end, you found out the limit was
    gamma + sum_{k>0} (ln(1+x/k)/x - 1/k)
    Your argument was:
    I have a sum of infinetely many terms, each converging to 0, therefore the sum converges to 0.
    This is not true. It happened to be true in that case, and I'll show you how you'd fix it.
    Limits can be interpreted as functions that take functions to real values (or oo or -oo). What we all know is that limit is a linear function, this is:
    if limf and limg exist, then (limf + limg) = lim(f+g).
    Easy induction shows that
    if limf1, limf2, ..., limfk exist, therefore
    limf1 + limf2 + ... + limfk = lim(f1+f2+...+fk)
    But this does not apply to infinetely many terms. you cant induct your way to infinity. So what im saying is:
    if limf1, limf2, limf3, ... exist, this DOES NOT mean that lim(f1+f2+f3+...) exists, and even if does, it doesnt mean that lim(f1+f2+...) = limf1 + limf2 + ...
    Thats what you used in the solution. That "the infinite sum of the limits is the limit of the infinite sum". Here's a counter example:
    sum_{k>0} x/k = x+x/2+x/3+x/4+...
    See: if x goes to 0, then x/k goes to 0, so the sum of the limits is 0+0+... = 0.
    But 1+1/2+1/3+1/4 diverges. so for all x>0, x+x/2+x/3+... if infinity. so the limit is actually infinity, not 0.
    Another counter example:
    Take the sequence a_{m,n} to be 1 if m=n, and 0 otherwise.
    the limit as n->oo of a_{m,n} is 0 for all m.
    But for all n,
    a_{1,n} + a_{2,n} + a_{3,n} + ... = 1.
    So if you take n->oo, the limit is 1, because the sum is always 1. but if you take the limit on each term, the sum of the limits is 0.
    So these were 2 very different examples of why "sum of limits
    eq limit of the sum"
    Now here's how to fix it:
    If you use the taylor expansion of ln(1+x), which converges for to the actual value of ln(1+x) if |x|1, event considering the infinite sum. We'll prove that the absolute value of the sum goes to 0.
    |sum_{k>0} x²/3k³ - x³/4k⁴ + x⁴/5k⁵ - ...| 0} x²/3k² + x³/4k³ + x⁴/5k⁴ + ...| 0} x²/k² + x³/k³ + ...| = sum_{k>0} x²/k² . 1/(1-x/k) = sum_{k>0} x/k² . 1/(1/x - 1/k)
    Because x->0, we can take x such that |x|= |2 - 1| = 1, so
    sum_{k>0} x/k² . 1/(1/x - 1/k) 0} x/k² = x.pi²/6. And that, as x->0, goes in fact to 0.
    Now we deal with the terms with exponent of x equal to 1.
    |sum_{k>0} x/2k²| = x.sum_{k>0} 1/2k²| = x.pi²/12, which also goes to 0 as x->0.
    So we have that
    sum_{k>0} -1/k + ln(1+x/k)/x = (thing with absolute value going to 0) + (thing with absolute value going to 0), and now, using the linearity of the limit (for 2 functions, not infinetely many), the whole limit is also 0, finishing the proof. So we're left with the gamma at the start.
    See, it wasnt so trivial, it requires some ability to work with some algebra, but it only worked because the error of ln(1+x/k)/x - 1/k not only goes to 0, but the sum of all the errors also goes to 0. As I said, you can't say that just because one term converges to 0, the sum of all of them should.
    That's it. I hope I could help

    • @Grecks75
      @Grecks75 หลายเดือนก่อน +1

      This is looking good. You are right, in general the x-limit of the infinite k-sum of f_k(x) is not the same as the infinite k-sum of the x-limits of f_k(x). Thank you for your contribution. It's a great addition to the video and saves the result.

    • @MichaelRothwell1
      @MichaelRothwell1 หลายเดือนก่อน

      Thanks for filling in this big gap in the proof!

    • @tusharbhatriya3700
      @tusharbhatriya3700 23 วันที่ผ่านมา

      what my doubt is even if that is correct if lim x-->0 ln(1+x/k)/x = 1/k , then ∑k>1 ( lim x-->0 ln(1+x/k)/x = 1/k) = 1 didn't it?

  • @alihatem2355
    @alihatem2355 2 หลายเดือนก่อน +15

    It can be easily solved using L'Hopital's rule and using a Digamma function

    • @yoav613
      @yoav613 2 หลายเดือนก่อน +7

      Yes,this is good for a short video,math505 you can get 2 videos for one problem🙃

  • @subtiliterviolet5593
    @subtiliterviolet5593 2 หลายเดือนก่อน +1

    You can also use definition of differentiability to express gamma function as 1-yx+o(x), and then everything cancels out nicely

  • @renerpho
    @renerpho 2 หลายเดือนก่อน +3

    And the first derivative at 0 approaches 1/12*e^(-γ)*π².

  • @srishtikdutta8946
    @srishtikdutta8946 หลายเดือนก่อน +1

    I think using the stirling approxmiatjon can also solve this quickly, though not as elegant.

  • @goldfist8711
    @goldfist8711 2 หลายเดือนก่อน +9

    i thought of using gamma(x)~1/x-Eulergamma approximation near 0

    • @Jocularious
      @Jocularious 2 หลายเดือนก่อน +2

      Then shift x -> x + 1, and then take the limit. Cheeky series expansion riddled throughout QFT

  • @patricklawless647
    @patricklawless647 หลายเดือนก่อน

    I have developed a conjecture (and written a draft paper) which is related to the limit in this video. The conjecture touches on a number of other areas as well. If any grad students/academics would be interested in co-publishing, please comment. Disclaimer: I am an independent researcher.

  • @GreenMeansGOF
    @GreenMeansGOF หลายเดือนก่อน

    I got the same answer using Euler’s product definition for Gamma which I find to be more satisfying since the Euler Mascheroni constant appears at the end.

  • @adityachandak2814
    @adityachandak2814 2 หลายเดือนก่อน +1

    I'm confused as to why the summation dissolved at 7:30. Shouldn't it be sum(1/k)?

    • @djridoo
      @djridoo 2 หลายเดือนก่อน

      Because the terms of the sum are [ln(1+x/k)/x -1/k] so it dissolves.
      But yeah, I would like more in TH-cam videos a reason why he can interchanges limit and series

  • @xanterrx9741
    @xanterrx9741 2 หลายเดือนก่อน +1

    Gorgeous result

  • @rome8726
    @rome8726 หลายเดือนก่อน

    Beautiful result as mentioned

  • @alexkaralekas4060
    @alexkaralekas4060 2 หลายเดือนก่อน +3

    In order to put a limit inside a infinite sum you have to show that the sum uniformly converges. So at 6:30 you cannot just take the limit of the inside of the sum. I am not saying that your sum is not uniformly convergent but you didnt show that work so the solution is lacking that proof and maybe it is wrong.

    • @maths_505
      @maths_505  2 หลายเดือนก่อน +2

      Trivial 😂

    • @alexkaralekas4060
      @alexkaralekas4060 2 หลายเดือนก่อน

      @@maths_505 yea 😂 i wanted to calculate a limit of a sum too but when i searched the internet, stack exchange had other ideas. Luckily it pushed me to find another way to solve my problem so i was happy in the end

    • @Grecks75
      @Grecks75 หลายเดือนก่อน +1

      ​@@maths_505Not really, I wish it was! 😭

  • @mcalkis5771
    @mcalkis5771 หลายเดือนก่อน

    I was expecting you to use the digamma function. Cool as always.

  • @aravindakannank.s.
    @aravindakannank.s. 2 หลายเดือนก่อน +1

    I saw the form 1 power inf
    So went with e^ (gamma (x +1 ) -1)/ x
    I saw inf by inf form
    Used lhopital
    Found the answer
    I thought I must be wrong but didn't had any reason for that
    But I got it right

    • @maths_505
      @maths_505  2 หลายเดือนก่อน +1

      Beautiful stuff

  • @Risu0chan
    @Risu0chan 2 หลายเดือนก่อน +1

    I screamed at 1:37. x! is NOT a finite product of integers.

  • @lotaniq4449
    @lotaniq4449 2 หลายเดือนก่อน +3

    expanding x! as x(x-1)…2.1 was also just wrong cuz u assumed that x! was a continuous function

    • @lotaniq4449
      @lotaniq4449 2 หลายเดือนก่อน +2

      Because x(x-1)…1 is only true for positive integers so its a step function

    • @RexxSchneider
      @RexxSchneider 2 หลายเดือนก่อน +3

      Yup. As soon as we are considering x → 0+ it should be obvious we have to replace x! with the gamma function. Then, of course, we have a continuous function and can take the limit inside. There's no way we can make progress without that substitution.

    • @geoffm5513
      @geoffm5513 2 หลายเดือนก่อน

      Yeah... Before seeing vid I was thinking: lim x! = 0! =1 so I = lim 1^(1/x) which is just... 0.

    • @Grecks75
      @Grecks75 หลายเดือนก่อน

      Huh? As we are going to take the limit as x approaches 0, it is obvious that we are talking here about a *continuous* version of the factorial function, the natural choice being the well-known Pi function investigated by Euler and others, defined as Pi(x) = Gamma(x + 1) for all real numbers except for negative integers, in modern terms.

    • @lotaniq4449
      @lotaniq4449 หลายเดือนก่อน

      @@Grecks75 yes but x!=x(x-1)…2.1 is only true for integers, that was my point. Also the purpose of the pi function is to make the factorial function continuous

  • @gchu_
    @gchu_ 2 หลายเดือนก่อน +1

    Digamma function?

  • @raghavendraPi
    @raghavendraPi 2 หลายเดือนก่อน

    Thanks a lot✨

  • @HarryPotter-dy1qh
    @HarryPotter-dy1qh หลายเดือนก่อน +1

    pls what is the app do you use to write this

    • @nestorv7627
      @nestorv7627 หลายเดือนก่อน

      Looks like microsoft onenote

    • @soreto314
      @soreto314 หลายเดือนก่อน

      ​@@nestorv7627looks like samsung notes

  • @Spiderp-p1l
    @Spiderp-p1l 2 หลายเดือนก่อน +3

    6:08 THE GOOFY SOUND EFFECTS ARE BACK

    • @aravindakannank.s.
      @aravindakannank.s. 2 หลายเดือนก่อน

      Hearing this sound at midnight will freak me

  • @sphericalrex6528
    @sphericalrex6528 หลายเดือนก่อน

    What is the app you are using for notes? I've been trying to find it since it looks very convenient

    • @soreto314
      @soreto314 หลายเดือนก่อน +1

      It's samsung notes, you can use notein if you don't have a samsung device

    • @sphericalrex6528
      @sphericalrex6528 หลายเดือนก่อน

      @senpai12349 Thanks!

  • @MrWael1970
    @MrWael1970 2 หลายเดือนก่อน

    Thanks.

  • @djsmeguk
    @djsmeguk 2 หลายเดือนก่อน +1

    It's about 0.561459483566885169824143214790880786765710386925 FYI

  • @Ownageffects
    @Ownageffects 2 หลายเดือนก่อน

    hi cro ! i fw you heavy just know that

    • @maths_505
      @maths_505  2 หลายเดือนก่อน +2

      Is this gen alpha speech cuz I've only just familiarised myself with gen z speech

  • @aliaujla110
    @aliaujla110 หลายเดือนก่อน

    Kamal are you coming to NUST?

    • @maths_505
      @maths_505  หลายเดือนก่อน

      Yup

  • @Redstoner34526
    @Redstoner34526 หลายเดือนก่อน

    Wouldn’t you have been left with 1+1/k and therefore gotten the answer + 1?

  • @miguelcontreras8372
    @miguelcontreras8372 2 หลายเดือนก่อน

    He remains me Mr Mackey

  • @Nolinlc
    @Nolinlc 2 หลายเดือนก่อน +5

    Do you accept integral suggestions? Because if so I have an interesting one one I came up with that you might like to make a video on.
    Also great video

    • @maths_505
      @maths_505  2 หลายเดือนก่อน +3

      Sure
      You can DM me on Instagram

    • @Nolinlc
      @Nolinlc 2 หลายเดือนก่อน

      @@maths_505
      Don’t have insta but I can show you here:
      Int (0, inf) sum (n=0, inf) sum (k=0, inf) x^(2+2n) ln(x) ln^k(lnx) (-1)^n /(n!k!)
      A little hint is that part of the solution allows you to plug your merch as well

    • @Nolinlc
      @Nolinlc 2 หลายเดือนก่อน

      @@maths_505
      Don’t have insta but I can show you here:
      Int (0, inf) sum (n=0, inf) sum (k=0, inf) x^(2+2n) ln(x) ln^k(lnx) (-1)^n /(n!k!)
      A little hint is that part of the solution allows you to plug your merch as well

    • @Nolinlc
      @Nolinlc 2 หลายเดือนก่อน +6

      Don’t have insta but I can show you here:
      Int (0, inf) sum (n=0, inf) sum (k=0, inf) x^(2+2n) ln(x) ln^k(lnx) (-1)^n /(n!k!)
      A little hint is that part of the solution allows you to plug your merch as well

    • @maths_505
      @maths_505  2 หลายเดือนก่อน +6

      @@Nolinlc yo that is sick 🔥🔥

  • @spinothenoooob6050
    @spinothenoooob6050 2 หลายเดือนก่อน +1

    ❤❤❤

  • @willemesterhuyse2547
    @willemesterhuyse2547 หลายเดือนก่อน

    Why can't you just substitute x = 0 into (x!)^(1/x) to get the limit equal to 1?

    • @Grecks75
      @Grecks75 หลายเดือนก่อน

      What do you get when you substitute x = 0? You get 1^inf, right. Now, what do you know about the form 1^inf? It's an indefinite form, its limit can be *anything*!

  • @alexchan4226
    @alexchan4226 หลายเดือนก่อน

    1

  • @exility_24
    @exility_24 2 หลายเดือนก่อน

    How can this linit exist like if x! Tends to 0

  • @Ownageffects
    @Ownageffects 2 หลายเดือนก่อน +1

    can i be the gamma to your X ????

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 หลายเดือนก่อน

    w^{In^x^e^x^x^0+x^0 ➖In^x^e^x}^w=x^1(w^{In^x^e^x➖ 1In^x^e^x+1}^w)

  • @Y6ing
    @Y6ing 2 หลายเดือนก่อน +1

    Hiiiii❤

    • @maths_505
      @maths_505  2 หลายเดือนก่อน

      Hey

  • @cdkw2
    @cdkw2 2 หลายเดือนก่อน

    no L'Hopital 😭

  • @TARUNSHARMA-jn7nu
    @TARUNSHARMA-jn7nu 2 หลายเดือนก่อน +1

    First comment hehe

    • @maths_505
      @maths_505  2 หลายเดือนก่อน +4

      First reply

    • @adityavsx
      @adityavsx 2 หลายเดือนก่อน +3

      @@maths_505First Thread now.

  • @jpf119
    @jpf119 2 หลายเดือนก่อน

    Please don't OKCool your videos

    • @kappasphere
      @kappasphere 2 หลายเดือนก่อน +1

      ok cool, I will OKCool your comment