A fascinating differential equation: when does the derivative equal the composition?

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ธ.ค. 2024

ความคิดเห็น • 85

  • @GeraldPreston1
    @GeraldPreston1 3 หลายเดือนก่อน +144

    Insane maths gameplay

    • @User-SSHVMBEY
      @User-SSHVMBEY 3 หลายเดือนก่อน +4

      Cranking derivatives

    • @gdmathguy
      @gdmathguy 3 หลายเดือนก่อน +1

      360 no-scoping integrals

  • @imadeddinefethallah3662
    @imadeddinefethallah3662 3 หลายเดือนก่อน +205

    9:44 "i don't think there's other solutions to this differential equation "
    The omnipresent 0 function cries in the corner as it mourns on its acknowledgement

    • @manateepink9100
      @manateepink9100 3 หลายเดือนก่อน +15

      alpha = 0

    • @tomkerruish2982
      @tomkerruish2982 3 หลายเดือนก่อน +23

      1:18 He rules it out since it's boring.

    • @ACertainMan
      @ACertainMan 3 หลายเดือนก่อน +6

      ​@@tomkerruish2982 That's the funny part.

    • @opensocietyenjoyer
      @opensocietyenjoyer 3 หลายเดือนก่อน +2

      i cannot think of a non-trivial differential equation that has only 0 as a solution

    • @imadeddinefethallah3662
      @imadeddinefethallah3662 3 หลายเดือนก่อน +1

      @@opensocietyenjoyer non homogenous ODEs, differenial equations with y in the denominator

  • @phyllipkjellberg7160
    @phyllipkjellberg7160 3 หลายเดือนก่อน +29

    Cool that the preposition "of" adds an extra "of" when you read fof(x) like fofofex

  • @nikolaoszervos96
    @nikolaoszervos96 3 หลายเดือนก่อน +48

    Another way to look at the problem is putting f(x) in the place of x. Then you have f'(f(x))=f(f(f(x))) with the RHS being f(f'(x)). Then f'=f^-1 which is a problem I believe you have already solved on the channel.

    • @maxgoldman8903
      @maxgoldman8903 3 หลายเดือนก่อน +15

      I think f’(x)=f^-1(x) => f’(f(x))=f(f’(x))=x, but it may not be the other way around, i.e., f’(f(x))=f(f’(x))x unless we can show f’(x)=f^-1(x) f’(f(x))=f(f’(x)).

    • @nikolaoszervos96
      @nikolaoszervos96 3 หลายเดือนก่อน +5

      @@maxgoldman8903 you are correct, in general fog=gof doesn't mean g=f^-1, e.g. f=x, g=x+1 then gof=fog. This means that f'=f^-1 is A solution to the problem but not the only one. I don't know if f'of=fof'=>f'=f^-1 can be shown.

  • @Calcprof
    @Calcprof 3 หลายเดือนก่อน +16

    How about something like f'(x) = f*f, where * is some sort of convolution. Solve by integral transforms!

    • @maths_505
      @maths_505  3 หลายเดือนก่อน +6

      Excellent idea

  • @emanuellandeholm5657
    @emanuellandeholm5657 3 หลายเดือนก่อน +14

    This is a cool problem! You have proved that if f(x) is of the form alpha x^beta, these, plus the trivial solution alpha=0, are the solutions. But are we sure there aren't any other solutions?

    • @maths_505
      @maths_505  3 หลายเดือนก่อน +5

      @@emanuellandeholm5657 someone commented a couple of cool solutions. If you scroll down you should find them.

    • @roberttelarket4934
      @roberttelarket4934 3 หลายเดือนก่อน +1

      @@maths_505: You are "maths" which tells me you’re not from the U.S. but probably from Britain. Yet you don’t have an accent!

    • @maths_505
      @maths_505  3 หลายเดือนก่อน +6

      @@roberttelarket4934 I'm actually from Pakistan and we call it both maths and math here but I grew up calling it maths.

  • @terdragontra8900
    @terdragontra8900 2 หลายเดือนก่อน

    This is very interesting, my first thought was “there must be a one parameter family of solutions, though probably without a closed form, just set f(0) to some value, and newtons method approximates a solution”, but because of the composition that doesn’t work because you need to know the behavior of f near f(0), too (when f(0) = 0 you do, which just gives you f(x) = 0)

  • @Winium
    @Winium 2 หลายเดือนก่อน

    Question for you (from someone uneducated in functional analysis) about "polynomial" functional equations, but the "exponent" is actually iteration. e.g. f(f(f(x))) + f(f(x)) + x = 0, and where '+' is not necessary integer addition -- what are these things and are they "interesting"? I guess, another way to phrase it might be: are there ring-like objects where instead of 'multiplication', we have function application?

  • @redroach401
    @redroach401 3 หลายเดือนก่อน +15

    Parental advisory

  • @MrWael1970
    @MrWael1970 3 หลายเดือนก่อน +2

    Nice Analysis. Thanks.

  • @sandem4592
    @sandem4592 3 หลายเดือนก่อน +6

    What a neat diff eqⁿ and all, but could you attempt the integral from 0 to 1 of x^(1/x) dx? A solution has evaded me for a bit too long. Maybe you know a special function I don't, would be cool to see mr integral man.

    • @maths_505
      @maths_505  3 หลายเดือนก่อน +5

      Aight

  • @モハメドイブラヒム-k8f
    @モハメドイブラヒム-k8f 2 หลายเดือนก่อน +1

    0x is also a valid solution too ,it's the first thing came to my mind it's nice and simple but But it kind of has no fun.😅

  • @XxAspect23xX
    @XxAspect23xX 3 หลายเดือนก่อน +7

    There will definately be more functions, just not in the polynomial form.. let the degree of f(x) by a then derivation makes the degree a-1 and f(f(x)) always has degree 2a so a=-1. thus the polynomial CAN BE IN THE FORM OF- a/x + b/x^2 + c/x^3........ till whatever term. this can be tough to find but by case bashing (say its of the form a/x, then a/x + b/x2 and so on) we can find functions and if one is lucky there could by a possibility for a parameter which would imply there are finitely such functions... nevertheless when talking about functions there are endless possibilities.. and the possibility of there being a function with maybe factorials and other stuff is def possible

    • @maths_505
      @maths_505  3 หลายเดือนก่อน +2

      Now this is the type of comment I was hoping for

    • @deinauge7894
      @deinauge7894 3 หลายเดือนก่อน

      hm... if f(x) = 1/x
      then f(f(x)) = x
      somewhere your logic is flawed, since the degree of f(f(x)) is not -2 😉

    • @DGQQ78
      @DGQQ78 3 หลายเดือนก่อน

      One can try with power series...

  • @-jason1912
    @-jason1912 3 หลายเดือนก่อน +3

    This is why i quit calculus, too many sweats

  • @05degrees
    @05degrees 3 หลายเดือนก่อน +1

    Multi-valued functions are continuous, you just don’t need to look at continuity in weird ways not compatible with Riemann surfaces! 😶
    Well at least those multi-valued functions that one can get in complex analysis.

  • @evanwilliams7376
    @evanwilliams7376 3 หลายเดือนก่อน +1

    I will memorize these equations so I can have a shortcut that is simpler to calculate than the power rule for this specific case.

  • @TheAzwxecrv
    @TheAzwxecrv 3 หลายเดือนก่อน +2

    Then what is wrong with the following argument? f (prime) = f of f mens, (d/dx) f(x) = f(f(x)). Put y = f(x). Then, dy / dx = f(y). So, we are free to choose for f(y). For example, if we choose f(y) = 1 / y, then y dy = dx, so y^2 / 2. = x + c, or y = f(x) = sqr rt ( 2x + c1).

    • @pokemantrainer
      @pokemantrainer 3 หลายเดือนก่อน +4

      By choosing f(y), you also choose f(x) (in your case f(x) = 1/x). Yet, in your final solutiin you get a different f(x) which is is a contradiction

    • @maths_505
      @maths_505  3 หลายเดือนก่อน +1

      Exactly

  • @mileroqueiro
    @mileroqueiro 2 หลายเดือนก่อน

    If f is invertible, with inverse g, then f' = f○f implies 1/g' = f'○g = f. That problem is equivalent to the fg' = 1 problem (derivative times the inverse equals 1).

  • @tomashernandez8711
    @tomashernandez8711 2 หลายเดือนก่อน

    What program do u use?

  • @isaswa1602
    @isaswa1602 3 หลายเดือนก่อน

    just curious how can we prove that power functions are the only solutions to this problem?

  • @TheDhdk
    @TheDhdk 3 หลายเดือนก่อน

    Alpha_1 can be simplified to e^(π(√3+i)/6) alpha_2 can also be similarly simplified

  • @edilon619
    @edilon619 3 หลายเดือนก่อน

    Já enjoei essas questões.

  • @mikelevels1
    @mikelevels1 3 หลายเดือนก่อน +1

    LET HIM COOK 🗣️🗣️🗣️🔥🔥🔥!!!

  • @VincentKok458
    @VincentKok458 3 หลายเดือนก่อน +1

    Did you change the thumbnail?

  • @frimnpi7473
    @frimnpi7473 3 หลายเดือนก่อน +1

    thumbnail goes hard

  • @XxAspect23xX
    @XxAspect23xX 3 หลายเดือนก่อน +3

    Here'sanother way to look at this, by integrating both sides we get-> f(x)= int( f(f(x)) dx ....... (1) so in (1) put x--> f(x) so we get f(f(x))= int (f(f(f(x)))dx ....... (2) now substituting f(f(x)) from (2) in (1) we get f(x)= int(int(f(f(f(x))) dx) dx now the pattern maybe a little tough but continuing the same process we see that f(x)= in(int(int.......( f(f(f(......(x)))))) )dx) dx) dx..... where the number of integrals is n-1 and the number of f's in f(f(f....(x)))) is n so by algebrec anaylitic continuation we can put n=0 so when the number of integral becomes -1 and f(f(...x)))) becomes 0, thus we get f(x)= d/dx(1)= 0 this is one such function then putting n=-1 we get f(x)= d2/d2x ( f-(x)) this may look a little tough buut we get the same function mentioned in the video. Both ideas work its just the method shown in the video is a little incomplete whereas the method used here is basically impossible to solve....

    • @maths_505
      @maths_505  3 หลายเดือนก่อน +1

      So it's a comparison between the incomplete and the impossible to solve😂😂😂

    • @deinauge7894
      @deinauge7894 3 หลายเดือนก่อน

      you cannot substitute the x in the integral by f(x). because in reality you have (1):
      f(x) = int (from somewhere to x) f(f(t)) dt
      then substituting x->f(x) changes the integration bounds and not the integrand

  • @brunojani7968
    @brunojani7968 3 หลายเดือนก่อน +2

    f(x)=0 is a solution

  • @pjb.1775
    @pjb.1775 3 หลายเดือนก่อน +1

    i honestly thought f(x) = 0 would be a solution that someone would care to put in a video

  • @ebw000
    @ebw000 3 หลายเดือนก่อน +1

    I like to think you record your videos first try with no notes or prep

  • @Loyis
    @Loyis 3 หลายเดือนก่อน +3

    Thanks for the explicit content warning lmao

  • @viktor-kolyadenko
    @viktor-kolyadenko 3 หลายเดือนก่อน +8

    "(complex number)^(complex number)" - very bad idea.

    • @charlievane
      @charlievane 3 หลายเดือนก่อน +1

      isn't surreal^surreal worse ?

  • @stefanalecu9532
    @stefanalecu9532 3 หลายเดือนก่อน +1

    I'm sure you've actually solved this exactly differential equation 10 months ago... I think the video was called "A very interesting differential equation: derivative equals composition"

    • @maths_505
      @maths_505  3 หลายเดือนก่อน +5

      Now that I've released 400 videos it's become hard to keep track of the problems I've solved😭

    • @Mario_Altare
      @Mario_Altare 3 หลายเดือนก่อน

      @@maths_505 th-cam.com/video/C6fZVwqhbnE/w-d-xo.html&ab_channel=Maths505 😀

  • @toony966
    @toony966 3 หลายเดือนก่อน

    Could you make a discord server?

    • @maths_505
      @maths_505  3 หลายเดือนก่อน

      Would that be useful to the community?

    • @toony966
      @toony966 3 หลายเดือนก่อน

      @@maths_505 I think it would because many people who are interested in mathematics and are viewers of your channel can communicate and discuss about mathematics and get help for mathematics.

    • @TheArtOfBeingANerd
      @TheArtOfBeingANerd 3 หลายเดือนก่อน +1

      Yes! I want a math discord server that isnt swarming with users

  • @roberttelarket4934
    @roberttelarket4934 3 หลายเดือนก่อน

    You didn’t have enough room in the margin? Is your name Fermat?!

  • @premdeepkhatri1441
    @premdeepkhatri1441 3 หลายเดือนก่อน +1

    Very Fast thinking and solving problem. One question is make simple when we put there any appropriate constant?

  • @DerMathematicker
    @DerMathematicker 3 หลายเดือนก่อน

    f(x) = 0

    • @maths_505
      @maths_505  3 หลายเดือนก่อน

      @@DerMathematicker indeed

  • @KaliFissure
    @KaliFissure 3 หลายเดือนก่อน

    Graph it

  • @maxvangulik1988
    @maxvangulik1988 3 หลายเดือนก่อน

    f^(n-1)(x)=f°^n(x)
    a•ß!/(ß+1-n)!•x^(ß+1-n)=a^sum[k=0,n-1](ß^k)•x^ß^n
    ß^n=ß+1-n
    a•ß!/(ß+1-n)!=a^((1-ß^n)/(1-ß))
    ß!/(ß+1-n)!=a^(n/(1-ß))
    a=(ß!/(ß+1-n)!)^((1-ß)/n)
    let n=2
    ß^2=ß-1
    ß^2-ß+1=0
    ß=(1+-isqrt(3))/2
    ß=e^(+-ipi/3)
    a=ß^((1-ß)/2)
    a=e^+-(ipi/6•e^(-+ipi/3))
    if n=3,
    f"(x)=f(f(f(x)))
    aß(ß-1)x^(ß-2)=a^(1+ß+ß^2)•x^ß^3
    ß^3=ß-2
    aß(ß-1)=a^((3-ß)/(1-ß))
    ß(ß-1)=a^(2/(1-ß))
    a=(ß^2-ß)^((1-ß)/2)
    this is solvable with the cubic formula, but I'd rather not

    • @maths_505
      @maths_505  3 หลายเดือนก่อน

      Fascinating

  • @varunnadgir4513
    @varunnadgir4513 3 หลายเดือนก่อน

    f(x) = 0 😂

  • @mau9639
    @mau9639 3 หลายเดือนก่อน +1

    allo
    :))

  • @davidalejandrolopeztorres1083
    @davidalejandrolopeztorres1083 3 หลายเดือนก่อน

    Awesome content as always. I would like to share that I was precisely thinking about this kind of Differential Equations yesterday after TH-cam recommended me this video: th-cam.com/video/rNUfiQgj6ZI/w-d-xo.html from Michael Penn (pretty similar approach, not sure if that was the source of inspiration of this video as well).
    However, I was thinking more in the equation f'(x) = f_n(x) (being f_n the nth composited function f). Doing the same trick you can lead to interesting conclusions about the parameters of the power functions that make the job. I haven't reach any marvelous result yet, but probably you could take a look if interested.
    It was nice to share results (and thoughts) with you today. Always a pleasure to see your videos, definitely they had become a recurrent highlight of the day. Kind regards from Mexico!

  • @quantum_psi
    @quantum_psi 2 หลายเดือนก่อน

    Math was fun and interesting up until differential equations. I then realized how most of it is fake and arbitrary. Sad

  • @alexterra2626
    @alexterra2626 3 หลายเดือนก่อน

    balls

  • @orionspur
    @orionspur 3 หลายเดือนก่อน

    1sties

  • @diogeneslaertius3365
    @diogeneslaertius3365 3 หลายเดือนก่อน +1

    Please stop saying "OK cool". It's extremely annoying.

    • @Javy_Chand
      @Javy_Chand 3 หลายเดือนก่อน +3

      "Ok cool!" Became the catchphrase of the channel.
      Stopping would be like changing π for some random letter

    • @Xnoob545
      @Xnoob545 3 หลายเดือนก่อน

      OK cool

    • @fullfungo
      @fullfungo 3 หลายเดือนก่อน

      Nuh uh

    • @maths_505
      @maths_505  3 หลายเดือนก่อน

      The ohhkayy coool is the reason why people have subscribed in the first place!

    • @diogeneslaertius3365
      @diogeneslaertius3365 3 หลายเดือนก่อน +1

      @@maths_505 Interesting. Could you add time codes for OK cool so I can press / unpress m on time? :)

  • @guruone
    @guruone 3 หลายเดือนก่อน

    AsymptoticSum[(-Log[1 - t x]/t)/z/. t -> n/z, {n, 1, z}, z -> Infinity]

    • @deinauge7894
      @deinauge7894 3 หลายเดือนก่อน

      this looks as if it gives 0 for all x. but maybe not 😅
      without the z in the denominator the sum converges to the integral of log(1-t x)/t for t from 0 to 1. Ok this is a divergent integral, and the 1/z seems to counteract this divergence. Have you plotted the result?