Let's calculate i factorial

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ธ.ค. 2024

ความคิดเห็น • 75

  • @GearsScrewlose
    @GearsScrewlose 4 หลายเดือนก่อน +108

    Mathematicians only care about approximation when they are trying to get a handle on something, while engineers don’t care about exact solutions ever.

    • @daddy_myers
      @daddy_myers 4 หลายเดือนก่อน

      What's the difference between mathematicians and engineers? One's actually useful.

    • @locrianphantom3547
      @locrianphantom3547 4 หลายเดือนก่อน +5

      Pi = 10^0 for engineers

    • @erichlf
      @erichlf 4 หลายเดือนก่อน +3

      My PhD is in numerical analysis and I would have to disagree with you.

  • @whenelvescry2625
    @whenelvescry2625 4 หลายเดือนก่อน +100

    bro got the wrong answer and had to switch subjects to justify it 💀💀 (i'm in eng and have turned in lab reports with 200% error)

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +51

      @@whenelvescry2625 the answer was in fact within the acceptable margins of error and so deemed correct by the axioms of engineering.

  • @ebw000
    @ebw000 4 หลายเดือนก่อน +6

    The “ok, cool” is very comforting at this point

  • @neilgerace355
    @neilgerace355 4 หลายเดือนก่อน +43

    Yes, suppose the engineer's bridge or cable is 8% short. No problem, it's within tolerance :)

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +7

      Indeed 😂

  • @SuperSilver316
    @SuperSilver316 4 หลายเดือนก่อน +27

    The Closed Form Gods are crying in the club right now!

  • @waarschijn
    @waarschijn 4 หลายเดือนก่อน +16

    f(conjugate(z)) = conjugate(f(z)) provided that f is analytic and real on the real axis

    • @zinzhao8231
      @zinzhao8231 4 หลายเดือนก่อน +1

      i f analytic and real on the real axis ?

    • @waarschijn
      @waarschijn 4 หลายเดือนก่อน +2

      @@zinzhao8231 Said differently:
      1. Whenever z is real, then Γ(z) is also real
      2. For every w, there is a power series about w and a positive number R, such that the series converges to Γ(z) whenever |z-w| < R.
      Because these two properties are true (and the domain is connected), we can conclude that Γ(conjugate(z)) = conjugate(Γ(z)) for all z. This is a lemma in complex analysis.

  • @CM63_France
    @CM63_France 4 หลายเดือนก่อน +5

    Hi,
    13:00 It would be better to get an interval. For the modulus and for the argument as well.
    "ok, cool" : 2:44 , 5:43 , 9:05 , 9:20 .

  • @OscgrMaths
    @OscgrMaths 4 หลายเดือนก่อน +11

    Amazing as usual, I love results like these so much!

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +5

      Hey not sure if you've noticed me on your channel but I'm a huge fan😂

  • @chaosredefined3834
    @chaosredefined3834 4 หลายเดือนก่อน +20

    I had a lecturer ask me to figure out the bandwidth of an oscillator. He didn't have a formula for it, but was curious what we could come up with. The bandwidth is (b - a), where a and b are where the function is 50% of it's peak. I know where the peak is, and I got (b^2 - a^2) = thing, at which point I got stuck. I came up with an approximation based on the idea that the peak was at the halfway point (so, (a+b)/2) and presented it to the lecturer. Later, I realised I could get past it without the approximation and came back with the exact formula. He said he preferred the approximation.

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +10

      @@chaosredefined3834 that is one hell of a plot twist 😂

    • @chaosredefined3834
      @chaosredefined3834 4 หลายเดือนก่อน +6

      @@maths_505 That is what an engineering environment looks like.

  • @Tosi31415
    @Tosi31415 4 หลายเดือนก่อน +24

    as i always hate approximations, I'll try to find a better closed form for it

  • @davidgillies620
    @davidgillies620 4 หลายเดือนก่อน +6

    The modulus of the approximation converges fast on the true value of ~ 0.521564, but the approximation itself converges more slowly (so successive approximants lie approximately on a circular arc in the complex plane).

    • @Grecks75
      @Grecks75 2 หลายเดือนก่อน

      That's bad news for us engineers (whose axioms seem to tell us that convergence is always exponential, lol). I also fear that the speed of convergence using the Euler infinite product would be even much worse.

  • @bigbrewer3375
    @bigbrewer3375 4 หลายเดือนก่อน +3

    cool (but quite simple) integral: Integral from 1 to e of: e^(-x)ln(x)dx = ln(2)

  • @NikitaMelik-Marutov
    @NikitaMelik-Marutov 4 หลายเดือนก่อน +1

    Wow!!! Your videos always surprises and shows that math is magic. Thanks for sharing

  • @salvatoreippolito5976
    @salvatoreippolito5976 4 หลายเดือนก่อน

    This video is gold. From the procedure to the engineers dissing.

  • @farfa2937
    @farfa2937 4 หลายเดือนก่อน +7

    By the fundamental theorem of programming (I googled "i!") it's about 0.5+0.15i. So you got much closer to the absolute value than to the real and imaginary parts independently.

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +3

      @@farfa2937 the approximation converges quite quickly (where quickly is defined within acceptable margins of error 😂)

  • @whippyPoo
    @whippyPoo 4 หลายเดือนก่อน +7

    Love this vids even though the highest math class I've taken at the moment is calc 2 lmao

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +1

      Thank you

    • @jonathanpetrucelli3837
      @jonathanpetrucelli3837 4 หลายเดือนก่อน

      Same

    • @chaosredefined3834
      @chaosredefined3834 4 หลายเดือนก่อน +1

      I am in a similar boat. I have done some personal study, but it was in number theory. I would love if the channel wanted to tackle some analytic number theory (like drawing connections between the reimann zeta function and prime numbers, and getting cool results from that), but I suspect that isn't his interest.

  • @bandishrupnath3721
    @bandishrupnath3721 4 หลายเดือนก่อน

    Sir its gud to be back, had some serious issues in my country( BD) . LOVE ur videos . U have just sum wonderful equations and its solutions.

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +3

      Yes I have been following the news. I'm glad you're safe alhamdullilah.

  • @zygoloid
    @zygoloid 4 หลายเดือนก่อน

    @4:20 Also worth noting that e^(conj z) = conj e^z, since that's probably the least trivial fact you're relying on here (still fairly trivial though).

  • @benjialuffie5524
    @benjialuffie5524 4 หลายเดือนก่อน +3

    Blackpenredpen gets i!=.498-.1549i? Who is right?

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +4

      That was Wolfram alpha not bprp💀

  • @lih3391
    @lih3391 4 หลายเดือนก่อน

    While stupidly looking for a closed form, this is the closest I got:
    We know the magnitude of i!, so it makes sense to go for the argument next, which is the imaginary part of ln(i!). The digamma function has a closed form for z = iy, which is 1/2y + coth(piy). You have to integrate the digamma function then to get the argument, with the boundary of the integration ending at z = i. The start point however must also lie on the line z = iy, so if you manage to get the arg((iy)!) for some y0, you can get it for any point on the z = iy line.
    int from (y0 to 1) 1/(2y) + coth(piy) dy + 1/2*ln(y0) + 1/pi*ln(sinh(piy0)) = arg(gamma(i))
    And i! = i*gamma(i)
    And i! = i*sqrt(pi/sinhpi)*e^i*(arg(gamma(i))
    It's too bad y0 cannot be 0 or infinity because the integral blows up😢. The integral of 1/2y + coth(piy) is 1/2*lny + 1/pi*ln(sinh(piy)). So theres a pole at y=0.

    • @lih3391
      @lih3391 4 หลายเดือนก่อน +1

      Edit: only the imaginary part of the digamma function has the closed form, and digamma(z) = d/dz ln(gamma(z))

  • @XoPlanetI
    @XoPlanetI 4 หลายเดือนก่อน +1

    This needs more work.The answer is probably an irrational fraction involving pi and e

  • @lokeshraybarman7007
    @lokeshraybarman7007 4 หลายเดือนก่อน

    Beautiful I just got to know about your TH-cam channel ❤❤❤❤❤it's outstanding ❤❤❤❤

  • @MrWael1970
    @MrWael1970 4 หลายเดือนก่อน

    We have to find a closed approximation that have a zero error. This is a hope. Anyway Thank you for your fascinating video.

  • @RagaGian
    @RagaGian 3 หลายเดือนก่อน

    Why is the answer different from what I get in WolframAlpha? 🙏🙏

  • @jeroenvandorp
    @jeroenvandorp 4 หลายเดือนก่อน

    Wolfram Alpha is cheating but I guess the algorithm uses a few more steps in the series representation. 0.49802-0.15495i. Cool subject. 👍

  • @daveydd
    @daveydd 4 หลายเดือนก่อน

    Sir this might be unrelated but please may you post a vid on how to solve: Sum from 1 to inf of ((-1)^n)/((2n-1)^2)

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      That's just Catalans constant bro

    • @daveydd
      @daveydd 4 หลายเดือนก่อน

      @@maths_505 yes sorry mb

  • @adenwellsmith6908
    @adenwellsmith6908 4 หลายเดือนก่อน

    0.49802 - 0.15495 i according to Wolfram

  • @mcalkis5771
    @mcalkis5771 4 หลายเดือนก่อน

    Good job. Though I must admit I was hoping you'd try your luck with those gamma function integrals lol. Thought they'd be a breeze for you.

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      I have solved em. Problem is, the result is expressed in terms of Γ(1+i) so that would be cheating in this content perhaps a future video can be made related to those integrals.

  • @palestinemorocco1920
    @palestinemorocco1920 4 หลายเดือนก่อน

    Super cool, but you used one or two factors ? I saw only one factor of the product

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      2 terms as I used the e to the gamma tern outside as well.

  • @Mephisto707
    @Mephisto707 4 หลายเดือนก่อน

    So there is a closed form for the absolute value of i!, but not for its argument, is that it?

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 3 หลายเดือนก่อน +1

      Thus far. We know exact forms of it, but in series and integral forms. Mainly we focus on ArgΓ(1+i) since that's what we need to go along with |Γ(1+i)| to exactly know Γ(1+i). Do you want some forms?

    • @Mephisto707
      @Mephisto707 3 หลายเดือนก่อน

      @@xinpingdonohoe3978 I do!

  • @zinzhao8231
    @zinzhao8231 4 หลายเดือนก่อน

    Interesting

  • @mikecaetano
    @mikecaetano 4 หลายเดือนก่อน

    Axioms of Engineering? Is that like the Power of Grayskull?

    • @maths_505
      @maths_505  4 หลายเดือนก่อน +1

      Yes but much more possible

  • @giorgioripani8469
    @giorgioripani8469 4 หลายเดือนก่อน

    But why did you say you use the second term in the approximation? You just used the k=1 term and the multiplication did not start from 0 so it is actually a first term approximatiln.
    Did I lost something?

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      Well it was the term outside the product symbol and the k=1 term so technically it's 2 terms.

    • @giorgioripani8469
      @giorgioripani8469 4 หลายเดือนก่อน

      Uhm, what would you define as the first term in this context?
      I am just curious because I would like to understand how you obtained the 50% error you mentioned

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      By only taking the exponential term💀 that was quite an error 😂

    • @giorgioripani8469
      @giorgioripani8469 4 หลายเดือนก่อน

      You mean only the term exp(-gamma z) / z ?😅😅

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      @@giorgioripani8469 yes 😭

  • @alexandermorozov2248
    @alexandermorozov2248 4 หลายเดือนก่อน

    😅👍

  • @AyushRajput-xw2ru
    @AyushRajput-xw2ru 4 หลายเดือนก่อน +1

    Hello can i get a reply from you

    • @Bruno-j6x
      @Bruno-j6x 4 หลายเดือนก่อน

      hi

    • @maths_505
      @maths_505  4 หลายเดือนก่อน

      @@AyushRajput-xw2ru yo

  • @teeqz2210
    @teeqz2210 2 หลายเดือนก่อน

    You lost me at hello

  • @kingzenoiii
    @kingzenoiii 4 หลายเดือนก่อน

    Guess who's thought about this? i!

  • @GicaKontraglobalismului
    @GicaKontraglobalismului 4 หลายเดือนก่อน +1

    (Aleph Zero)! = (Aleph One). And .... this is zero% error, isn't it?
    Down With Vaccinations, Globalization, Digitization, Collectivization and Electrification!

  • @ThomasLomba
    @ThomasLomba 4 หลายเดือนก่อน

    calling it i! for the clickbait :\

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 หลายเดือนก่อน

    Troppo lungo!!!...(Too long)

  • @cparks1000000
    @cparks1000000 3 หลายเดือนก่อน

    Not impressed.