Comparing scRNA-Seq | Suerat Integration Analysis (Brief)

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ก.พ. 2025

ความคิดเห็น • 16

  • @pingliu1310
    @pingliu1310 2 ปีที่แล้ว +2

    Thanks a lot for your video, quite a nice introduction!!!!

  • @kitdordkhar4964
    @kitdordkhar4964 2 ปีที่แล้ว +1

    Useful for my analysis. Thanks LB 🙂

  • @mahamoussa5712
    @mahamoussa5712 ปีที่แล้ว

    You are a fabulous teacher, of cures! Could you post your other video?

  • @paroletatel
    @paroletatel 2 ปีที่แล้ว +1

    Thank you

  • @RituVerma27
    @RituVerma27 2 ปีที่แล้ว +1

    Hello Brandon, I am having the following error - Error in which(x = object.classes, useNames = TRUE) :
    argument to 'which' is not logical
    in the step where we are trying to find anchors (chapter 1)

  • @dannieqing535
    @dannieqing535 2 ปีที่แล้ว

    Hi Brandon, do you know how to get gene with logFC with different treatment. It is easy to make dot plot, but how to get those sample level dataset and read in csv file?Thanks!

  • @chih-hanh.9514
    @chih-hanh.9514 11 หลายเดือนก่อน

    Hi, thank you for your video. I have an error message when I was in this line "merged.WIHN

    • @chih-hanh.9514
      @chih-hanh.9514 11 หลายเดือนก่อน

      For those who have the same problem, I solved this issue by downgrading Seurat from v5 to v4.3.0.

  • @paapangromearound446
    @paapangromearound446 2 ปีที่แล้ว

    Hi, Thank you very much for many of your vdo. That's brilliant helpful for me.
    I have a question is that, I did a single cell sequencing. However, I found out that there is the batch effect in my dataset.
    My question is that When I look at the data I feel like the batch 1 usually can read with the lower count number while batch 2 shown much more different in the scale. and this will cause the problem because I cannot compare this control and treatment by pooling the data together because both of them are in different scale.
    In this case which method would be the best fit to try and does quantile normalization is necessary.

    • @LiquidBrain
      @LiquidBrain  2 ปีที่แล้ว

      Hi you may regress out the batch effect at the step “scaleData”, with the function vars.to.regress = “your_sample_batch_ID”
      Hope this helps - Lind

    • @paapangromearound446
      @paapangromearound446 2 ปีที่แล้ว

      @@LiquidBrain thank you so much, I would like to ask if you are open for some collaboration in research?

    • @LiquidBrain
      @LiquidBrain  2 ปีที่แล้ว +1

      @@paapangromearound446 Oh ya sure, you can drop us an email here liquidbrain.r@gmail.com

    • @paapangromearound446
      @paapangromearound446 2 ปีที่แล้ว

      @@LiquidBrain Thank you very much, I have sent you my email. :)

    • @paapangromearound446
      @paapangromearound446 2 ปีที่แล้ว

      @@LiquidBrain Hi, I am sorry for my delay response of my email due to my health circumstance. However, I have sent you the information. I am very sorry for my late reply again. I am looking forward for our discussion. Thank you very much

  • @mamiburgac2032
    @mamiburgac2032 2 ปีที่แล้ว

    Hello, first of all thank you for explaining the Satijilab code! Its is really great what you are doing!
    However, I have a very short question. On my analysis there are more than 2 samples, therefore
    sample_detect

  • @MohammadSaleem-vl8sn
    @MohammadSaleem-vl8sn 2 ปีที่แล้ว +1

    Please make tutorial on how we can use machine learning like random forest, bortula , k means , in GWAS, disease prediction,