Danke für diesen Guide . Ist das erste Video , was ich von dir sehe, doch bestimmt nicht das letzte. Mathe-Skripte mögen zwar allgemein anwendbar und präzise sein, verlieren sich aber für mich schnell in Indize-Schreibweisen um auch noch für Matrizen der 2022ten Dimension gültig zu sein. Eine Welt, in der es in Mathe reicht Definitionen zu kennen und sich daraus Rechenschritte abzuleiten, ohne jemals auf die Hilfe von Leuten, die den Weg bereits kennen, angewiesen zu sein, scheint mir fremd. Da Geld wohl nicht an erster Stelle steht (bodenlos niedrige Ad-Zens Einnahmen), hier der Dank eines etwas schlaueren Studenten, der froh ist das Richtige unter den 23 Tutorials zum Thema Transformationsmatrizen angeklickt zu haben.
Weiter so mit anspruchsvollen Themenbereichen aus der linearen Algebra II. Hoffe doch das demnächst mehr aus LinA aufgeschaltet wird von Dir. Das ist sehr hilfreich und verständlich erklärt!👍
Extrem angenehm zuzuhören und super ersichtlich erklärt, vielen vielen Dank! Wenn man bedenkt, dass du das kostenlos für jeden zur Verfügung stellst... Vielen Dank! Es hilft sehr!
Echt ein mega gut erklärtes Video. Ich war schon fast am verzweifeln, aber dank deiner extrem ausführlichen Erklärung hab ich es jetzt endlich verstanden. Danke dafür und weiter so.... Und an alle: Es lohnt sich sich die Zeit zu nehmen und das Viedeo zu schauen.
Unglaublich gut erklärt👌 Vielen Dank ich weis das es an der Uni ja alles ganz formal erklärt werden muss, aber ist dann halt so trocken und unverständlich... und dann hilft so ein video extrem😇
Hammer vielen Dank, genau das habe ich nicht verstanden und genau das kommt in der Prüfung sehr wahrscheinlich. Du erklärst absolut gut! Ich glaube ich kenne keinen der besser erklären kann
3:12 wie kannst du die eigenvektoren so einfach ablesen, is it possible to learn this power?Mache das mit parametern und das ist echt mühsam und verbaraucht viel Zeit. Was sind Pigolelemente
Hallo, erstmal schön, dass du zu diesem Thema Videos machst und so ausführlich erklärst. Eine Anmerkung hätte ich: Müsste der Kern in Minute 3 nicht dim=3 haben, wegen 3 Nullzeilen? Z.B.: Zeile 4 - zeile 3 -> Neue Zeile 4 also (0 0 0 0 1) - Zeile 2.
Erstmal vielen Dank für das Video, super erklärt und sehr hilfreich. Bei uns gab es dazu nicht ein Beispiel. Nun haben wir aber die Jordan Matrizen so definiert, das die Einsen unterhalb der Diagonalen stehen, also quasie einfach die transponierte Jordan-Matrix. Was muss ich dann im Kochrezept von dir anders machen, damit die einsen unterhalb der Diagonalen stehen?
Beim Aufstellen der Transformationsmatrix muss dann die Reihenfolge anders sein. Bei mir sind die Vektoren aufsteigend (1. Stufe, 2. Stufe, ...) und bei dir müssten sie dann absteigend sein (..., 2. Stufe, 1. Stufe).
Die Determinante einer Dreiecksmatrix ist immer das Produkt der Diagonalelemente. Hier also gerade (x-1)^5. Das folgt recht schnell aus dem Laplaceschen Entwicklungssatz.
@@drdeas1212 habe dasselbe Problem wie @Kassem C.. Der Online-Rechner gibt mir als Eigenwerte auch etwas anderes und auf der Hauptdiagonalen steht ja eben nicht 5x (lamba-1) sondern wenn dann: (1-lambda)^2*((0-lambda)(2-lambda)(1-lambda) + (1-lambda)
Hey, kurze Frage zum Aufstellen des Polynoms: Durch das Vertauschen einer Zeile wird ja das Vorzeichen der Determinante umgedreht, also das Polynom mal (-1) gerechnet Wenn wir das ausschreiben hätten wir also: p(x) = (-1)(1-lambda)^4(-1-lambda) = ( 1-lambda)^4(1+lambda) Wo liegt mein Fehler? :) Mfg
Ich hoffe du kommst dazu noch zu antworten: Ich hätte eine Frage bezüglich der Eigenvektoren und zwar kann man ja von dir unterschiedliche Eigenvektoren wählen (z.B. (0 0 1 1 0) und (0 1 0 1 0)) aber w3 bleibt immer gleich, wodurch ein falsches Ergebnis rauskommt. Gibt es dafür eine andere Lösung?
Daumen hoch für die Jordanreihe ! Frage: Ob man zuerst die Vektoren w oder zuerst die Vektoren u in der Trafomatrix X listet sollte keine Rolle spielen, aber: Darf man die Reihenfolge der w-Vektoren permutieren ? Hintergrund der Frage ist : Wenn man die Eigen/Hauptvektoren geschickt listet ist die Bestimmung Der Inversen Tafomatrix X erheblich schneller/einfacher ? in diesem Fall zb die u-Vektoren als erstes listen .. dann erst die w-Vektoren ( wenn man die Reihenfolge der w´s auch noch permutieren darf wirds noch einfacher - vermutlich darf man das aber nicht ? ) noch ein Vorschlag: es bietet sich an noch ein Video bzgl den zugehörigen Minimalpolynomen zu den Beispielen zumachen - da gibt es schon noch ne Menge dazu zu sagen...
Die Reihenfolge der w-Vektoren muss genau so bleiben, denn nur so hat man ja die Jordankette beschrieben. Ansonsten würdest du nicht die Jordankästchen in der Jordan-Normalform bekommen. Minimalpolynom ist eine gute Idee. Danke!
Ich habe das Problem, dass der Span von meinem höchsten Kern 2 Vektoren mehr beinhaltet als vom davorigen Kern. Welchen Wert soll ich dann als Hauptvektor von den beiden nehmen?
Mal angenommen ich habe 2 Eigenwerte und führe dieses Verfahren erst mit dem Eigenwert der algebraischen Vielfachkeit von 2 durch, anschließend mit dem der algebraischen Vielfachkeit von 1. Woher weiß ich in welcher Reihenfolge ich die bekommen Vektoren in der X-Matrix anordnen muss ?
Sehr gutes Video. Ich weiß, dass das Video schon etwas älter ist, aber vllt. ließt das ja noch jemand, der mir helfen kann. Was mach ich, wenn bei den Jordanketten in einer höheren Stufe mehr "Punkte" sind als bei den Eigenvektoren. D.h. mein Eigenraum ist 1 dimensional, aber der Hauptraum mit ^2 ist z.B. vierdimensional. Dann kann ich nicht mehr solche Jordanketten bilden. ??
Falls du meinst: WARUM muss man das berechnen? Akzeptier's erst mal als Kochrezept. Eine Erklärung hierzu war zumindest bei mir mehrere Vorlesungen lang und ziemlich technisch. Weil die Hintergründe eben recht verzwickt sind, ist die Videoreihe zur Jordan-Normalform rein als Kochrezept zu gedacht
Wir wurden im Mathe-Studium damit und mit anderen Normalformen ein ganzes Semester lang gequält. Da kamen zwar mehr Beweise rüber, aber dafür hat man den Wald nicht nur vor lauter Bäumen sondern vor lauter Zellbestandteilen nicht mehr gesehen. In dieser Analogie bleibend, war am Schluss mehr als die Hälfte nicht in der Lage, eine Palme von einem Weihnachtsbaum zu unterscheiden :-)
@@brightsideofmaths Weil unser Prof so die Klausuren stellt 😅. Bei den Altklausuren ist eigentlich immer eine JNF dabei (von der auch die Transformationsmatrix bestimmt werden muss) die nicht trigonalisierbar ist, meist dann in einem Körper der Charakteristik p. Findet man leider recht wenig im Internet an verständlichen Erklärungen, weil die meisten Profs das nicht verlangen (unser meint das wäre ja nur ein Sonderfall wenn die Matrix trigonalisierbar ist 😶). Wir haben im Skript zwar einen Algorithmus, der ist aber für mich auch nicht wirklich verständlich. Das bestimmen der JNF ist kein Problem, nur das der Transformationsmatrix.
Dann solltest du diese Frage an deinen Prof stellen. Ich kann ja kaum etwas darüber sagen, da ich nicht weiß, was ihr genau mit Körper der Charakteristik p alles gemacht hat. Das Video hier kümmert sich nur um den Körper C (und R).@@essc2204
Bei einer Matrix, auf die man den Gauß-Algorithmus angewendet hat, nennt man die ersten Einträge in jeder Zeile (von links gelesen), die ungleich Null sind, PIVOTelemente. Dieser wird dann als eine 1 gewählt und alle anderen Einträge in seiner Spalte sind 0.
Unfassbar wie umständlich das in meinem Mathebuch (extra für nicht so schnelle) beschrieben ist. Danke dir 1000 mal- sehr coole Videoreihe!
kann ich nur bestätigen :)
Danke für diesen Guide . Ist das erste Video , was ich von dir sehe, doch bestimmt nicht das letzte. Mathe-Skripte mögen zwar allgemein anwendbar und präzise sein, verlieren sich aber für mich schnell in Indize-Schreibweisen um auch noch für Matrizen der 2022ten Dimension gültig zu sein. Eine Welt, in der es in Mathe reicht Definitionen zu kennen und sich daraus Rechenschritte abzuleiten, ohne jemals auf die Hilfe von Leuten, die den Weg bereits kennen, angewiesen zu sein, scheint mir fremd. Da Geld wohl nicht an erster Stelle steht (bodenlos niedrige Ad-Zens Einnahmen), hier der Dank eines etwas schlaueren Studenten, der froh ist das Richtige unter den 23 Tutorials zum Thema Transformationsmatrizen angeklickt zu haben.
Danke :)
Weiter so mit anspruchsvollen Themenbereichen aus der linearen Algebra II. Hoffe doch das demnächst mehr aus LinA aufgeschaltet wird von Dir. Das ist sehr hilfreich und verständlich erklärt!👍
Extrem angenehm zuzuhören und super ersichtlich erklärt, vielen vielen Dank! Wenn man bedenkt, dass du das kostenlos für jeden zur Verfügung stellst... Vielen Dank! Es hilft sehr!
Das ist so unfassbar gut erklärt! Vielen tausend dank!
Gerne! Ich freue mich immer über ein Abo auf Steady :)
Echt ein mega gut erklärtes Video. Ich war schon fast am verzweifeln, aber dank deiner extrem ausführlichen Erklärung hab ich es jetzt endlich verstanden. Danke dafür und weiter so....
Und an alle: Es lohnt sich sich die Zeit zu nehmen und das Viedeo zu schauen.
Vielen Dank dass du auch Videos über solche fortgeschrittenen Themen machst :-)
Sorry, für den mehrmaligen Upload. Ich hatte ein Problem, den Ton synchron zu kriegen. Jetzt sollte es aber passen. Viel Spaß :)
Danke für dieses tolle Video, durch dich habe ich das endlich verstanden.
Sehr gute Videoreihe zur Jordan-Normalform !
Richtig Tolles Tutorial :D Klasse Erklärung!!
Unglaublich gut erklärt👌 Vielen Dank
ich weis das es an der Uni ja alles ganz formal erklärt werden muss, aber ist dann halt so trocken und unverständlich... und dann hilft so ein video extrem😇
Hammer vielen Dank, genau das habe ich nicht verstanden und genau das kommt in der Prüfung sehr wahrscheinlich.
Du erklärst absolut gut! Ich glaube ich kenne keinen der besser erklären kann
Danke :) Das freut mich sehr!
Vielen Dank, fand das sehr hilfreich!
Hammer Video, selten so ne gute Erklärung gesehen!!
Wie kommt man im 2.Schritt bei der Berechnung des Eigenraumes auf den Spann? 3:30
Du hast mir sehr weitergeholfen, dankeschön! :)
Wenn es einem so gezeigt wird, versteht man es auch ;).
Klasse. Vielen Dank :)
hätte man auch (00100)t für span vom Hauptraum ker(A-In)² wählen können als Eigenvektor?
3:12 wie kannst du die eigenvektoren so einfach ablesen, is it possible to learn this power?Mache das mit parametern und das ist echt mühsam und verbaraucht viel Zeit. Was sind Pigolelemente
The power is not so strong. One just have to find two linearly independent vectors here. So one looks at the rows and constructs it.
Hallo, erstmal schön, dass du zu diesem Thema Videos machst und so ausführlich erklärst. Eine Anmerkung hätte ich: Müsste der Kern in Minute 3 nicht dim=3 haben, wegen 3 Nullzeilen? Z.B.: Zeile 4 - zeile 3 -> Neue Zeile 4 also (0 0 0 0 1) - Zeile 2.
Es sind doch nur zwei Nullzeilen, oder?
@@brightsideofmaths ich hätte gesagt 3 Nullzeilen.
mega gutes Video, dankeschön!
Auf 7:05 soll statt 2. Vektor in Span Vektor (0,0,1,0,0) sein, oder?
Nein, ich will schon genau diese Vektoren wählen.
Vielen lieben Dank.
You are welcome :)
Krankes Video hab direkt alles gecheckt.
Dafür wurde dieses kranke Video gemacht :)
Erstmal vielen Dank für das Video, super erklärt und sehr hilfreich. Bei uns gab es dazu nicht ein Beispiel. Nun haben wir aber die Jordan Matrizen so definiert, das die Einsen unterhalb der Diagonalen stehen, also quasie einfach die transponierte Jordan-Matrix. Was muss ich dann im Kochrezept von dir anders machen, damit die einsen unterhalb der Diagonalen stehen?
Beim Aufstellen der Transformationsmatrix muss dann die Reihenfolge anders sein. Bei mir sind die Vektoren aufsteigend (1. Stufe, 2. Stufe, ...) und bei dir müssten sie dann absteigend sein (..., 2. Stufe, 1. Stufe).
Ahh ok. Vielen Dank für die schnelle Antwort!
Vielen Dank
danke war sehr hilfreich
Hallo, beim ker (A-E5) und zwar erte Zeile dritte Spalte erhält jedoch kein Null, sondern -1 oder?
Super erklärt!
wie hast du gesehen dass da als EW direkt (lambda-1)^5 raus kommt ?
So wie er es formuliert hat, habe ich es so verstanden, dass er es bereits ausgerechnet hat, es aber leicht nachzurechnen ist.
Die Determinante einer Dreiecksmatrix ist immer das Produkt der Diagonalelemente. Hier also gerade (x-1)^5.
Das folgt recht schnell aus dem Laplaceschen Entwicklungssatz.
@@drdeas1212 habe dasselbe Problem wie @Kassem C.. Der Online-Rechner gibt mir als Eigenwerte auch etwas anderes und auf der Hauptdiagonalen steht ja eben nicht 5x (lamba-1) sondern wenn dann: (1-lambda)^2*((0-lambda)(2-lambda)(1-lambda) + (1-lambda)
Hey, kurze Frage zum Aufstellen des Polynoms:
Durch das Vertauschen einer Zeile wird ja das Vorzeichen der Determinante umgedreht, also das Polynom mal (-1) gerechnet
Wenn wir das ausschreiben hätten wir also:
p(x) =
(-1)(1-lambda)^4(-1-lambda)
= ( 1-lambda)^4(1+lambda)
Wo liegt mein Fehler? :)
Mfg
Was macht man, wenn man als Vektor einen erhält, der im Kern vom Eigenraum liegt (also bei Stufe 2 zum Beispiel)?
Ich hoffe du kommst dazu noch zu antworten: Ich hätte eine Frage bezüglich der Eigenvektoren und zwar kann man ja von dir unterschiedliche Eigenvektoren wählen (z.B. (0 0 1 1 0) und (0 1 0 1 0)) aber w3 bleibt immer gleich, wodurch ein falsches Ergebnis rauskommt. Gibt es dafür eine andere Lösung?
Wir wählen ja w3 als aller erstes. Die anderen Vektoren, w2 und w1, ergeben sich ja erst dadurch.
Daumen hoch für die Jordanreihe ! Frage: Ob man zuerst die Vektoren w oder zuerst die Vektoren u in der Trafomatrix X listet sollte keine Rolle spielen, aber: Darf man die Reihenfolge der w-Vektoren permutieren ? Hintergrund der Frage ist : Wenn man die Eigen/Hauptvektoren geschickt listet ist die Bestimmung Der Inversen Tafomatrix X erheblich schneller/einfacher ? in diesem Fall zb die u-Vektoren als erstes listen .. dann erst die w-Vektoren ( wenn man die Reihenfolge der w´s auch noch permutieren darf wirds noch einfacher - vermutlich darf man das aber nicht ? )
noch ein Vorschlag: es bietet sich an noch ein Video bzgl den zugehörigen Minimalpolynomen zu den Beispielen zumachen - da gibt es schon noch ne Menge dazu zu sagen...
Die Reihenfolge der w-Vektoren muss genau so bleiben, denn nur so hat man ja die Jordankette beschrieben. Ansonsten würdest du nicht die Jordankästchen in der Jordan-Normalform bekommen.
Minimalpolynom ist eine gute Idee. Danke!
Unfassbar gut erklärt und du klingst dabei wie Armin Maiwald
Ich sehe das mal aus Kompliment ;)
@@brightsideofmaths Ist es :)
Vielen dank!
Ich habe das Problem, dass der Span von meinem höchsten Kern 2 Vektoren mehr beinhaltet als vom davorigen Kern. Welchen Wert soll ich dann als Hauptvektor von den beiden nehmen?
1000 Dank!!
Mal angenommen ich habe 2 Eigenwerte und führe dieses Verfahren erst mit dem Eigenwert der algebraischen Vielfachkeit von 2 durch, anschließend mit dem der algebraischen Vielfachkeit von 1. Woher weiß ich in welcher Reihenfolge ich die bekommen Vektoren in der X-Matrix anordnen muss ?
Erst die Eigenvektoren des einen Eigenwertes und dann die des anderen.
Die Reihenfolge ist dabei egal?
Nicht egal. Es kommt darauf wie deine Jordan-Normalform aussehen sollen.@@blauerhering8200
Aufgabenstellung ist: berechne eine invertierbare 3x3 Matrix S so, dass S^-1 AS in Jordanscher Normalform ist und gebe diese normalform an
Mit dem einen Eigenwert habe einen Eigenvektor und einen Haultvektor und mit dem anderen EW nur einen eigenvektor
wie kommt man auf die span jeweils?
Sehr gutes Video. Ich weiß, dass das Video schon etwas älter ist, aber vllt. ließt das ja noch jemand, der mir helfen kann. Was mach ich, wenn bei den Jordanketten in einer höheren Stufe mehr "Punkte" sind als bei den Eigenvektoren. D.h. mein Eigenraum ist 1 dimensional, aber der Hauptraum mit ^2 ist z.B. vierdimensional. Dann kann ich nicht mehr solche Jordanketten bilden. ??
Das kann nicht passieren... Ich glaube weil das im Prinzip nur eine Vertauschung der Jordankästchen wäre...
Wie kommt dieses ^2 und ^ 3 der matrix zustande?
Falls du meinst: WARUM muss man das berechnen? Akzeptier's erst mal als Kochrezept. Eine Erklärung hierzu war zumindest bei mir mehrere Vorlesungen lang und ziemlich technisch. Weil die Hintergründe eben recht verzwickt sind, ist die Videoreihe zur Jordan-Normalform rein als Kochrezept zu gedacht
Wir wurden im Mathe-Studium damit und mit anderen Normalformen ein ganzes Semester lang gequält. Da kamen zwar mehr Beweise rüber, aber dafür hat man den Wald nicht nur vor lauter Bäumen sondern vor lauter Zellbestandteilen nicht mehr gesehen. In dieser Analogie bleibend, war am Schluss mehr als die Hälfte nicht in der Lage, eine Palme von einem Weihnachtsbaum zu unterscheiden :-)
Beweise sind wichtig, aber man sollte nie den Wald aus dem Blick verlieren :)
vieelen Dank
Wie bestimmt man die Transformationsmatrix in dem Fall, dass A nicht Trigonalisierbar ist?
Matrizen über den komplexen Zahlen sind immer trigonalisierbar :)
@@brightsideofmaths Ja, aber in der Klausur dürften wir es ja wahrscheinlich nicht mit C als Körper zu tuen haben.
Warum nicht?@@essc2204
@@brightsideofmaths Weil unser Prof so die Klausuren stellt 😅. Bei den Altklausuren ist eigentlich immer eine JNF dabei (von der auch die Transformationsmatrix bestimmt werden muss) die nicht trigonalisierbar ist, meist dann in einem Körper der Charakteristik p. Findet man leider recht wenig im Internet an verständlichen Erklärungen, weil die meisten Profs das nicht verlangen (unser meint das wäre ja nur ein Sonderfall wenn die Matrix trigonalisierbar ist 😶). Wir haben im Skript zwar einen Algorithmus, der ist aber für mich auch nicht wirklich verständlich. Das bestimmen der JNF ist kein Problem, nur das der Transformationsmatrix.
Dann solltest du diese Frage an deinen Prof stellen. Ich kann ja kaum etwas darüber sagen, da ich nicht weiß, was ihr genau mit Körper der Charakteristik p alles gemacht hat. Das Video hier kümmert sich nur um den Körper C (und R).@@essc2204
wie heißen diese Elemente ? Pibeaut-Elemente ?
Bei einer Matrix, auf die man den Gauß-Algorithmus angewendet hat, nennt man die ersten Einträge in jeder Zeile (von links gelesen), die ungleich Null sind, PIVOTelemente. Dieser wird dann als eine 1 gewählt und alle anderen Einträge in seiner Spalte sind 0.