Reminder of Remainder

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 ธ.ค. 2024

ความคิดเห็น • 131

  • @jeesimplified-subject
    @jeesimplified-subject  หลายเดือนก่อน +20

    We hope that you learned how fundamental properties can occur at unexpected times, a mix of such unique illustrations must be practices by you in case aiming for top ranks. for that only we offer {SO60} to those who struggle with problem solving
    Here's the link for more details
    courses.jeesimplified.com/courses

    • @uttu2008
      @uttu2008 หลายเดือนก่อน

      Sir we can solve it by binomial method by breaking 25 as 17+8, 19 as 17+2, 2^some as (17-1)^some. At the end we only get multiple of 17..
      Is my method correct?

  • @GamerzInfinite
    @GamerzInfinite หลายเดือนก่อน +36

    it can be proved using binomial theorem:
    we write a^n = (a - b + b)^n
    expanding using binomial thm:
    a^n = k^n + nC1.k^n-1.b + ...... + b^n (where k=(a-b))
    so, a^n - b^n = k {k^n-1 + nC1.k^n-2.b + .....}
    as combination operator always result in integer the whole bracket on RHS is an integer (say p)
    so, a^n - b^n = (a - b) . p
    thus a^n - b^n is always divisible by (a - b)

    • @crazymathematician88
      @crazymathematician88 หลายเดือนก่อน

      I have some confusion here hope you could resolve. In last expansion of binomial there is only 2nC2nb²^n then how did you take k as common from it??????????

    • @AAlok_Yadav_AA
      @AAlok_Yadav_AA หลายเดือนก่อน +1

      It is copied from chatgpt😂

    • @strangeboysam2594
      @strangeboysam2594 หลายเดือนก่อน

      @@crazymathematician88 last term se K common nahi nikla hai i.e
      a^n = k {k^n-1 + nC1.k^n-2.b + .....} + b^n
      then usne B^n ko left hand side laya hai

    • @crazymathematician88
      @crazymathematician88 27 วันที่ผ่านมา

      @@strangeboysam2594 got it. Matlab left side lake k common (jo ki (a-b) hain) common liya hain. 👍

  • @jeesimplified
    @jeesimplified หลายเดือนก่อน +77

    How was it 👀?

    • @AdarshMourya410
      @AdarshMourya410 หลายเดือนก่อน +5

      @@jeesimplified Bhaiya a^(2n) - b^(2n) ko we can rewrite as (a^n)² - (b^n)² fir x²-y²= (x-y)(x+y) property use krke (a^n-b^n)(a^n+b^n) likh skte hai and (a^n-b^n) is divisible by a-b and hence pura a^(2n) - b^(2n) is divisible by a-b

    • @Naitik_Barnwal
      @Naitik_Barnwal หลายเดือนก่อน +5

      Aye, fake account, Original channel pe comment karte hue😂

    • @AdarshMourya410
      @AdarshMourya410 หลายเดือนก่อน +1

      @@Naitik_Barnwal 😭😭😭🙏🏻

    • @Naitik_Barnwal
      @Naitik_Barnwal หลายเดือนก่อน +6

      @@jeesimplified bhai, fake account leke, students attract mat karo, hume original channel ka naam pata hai😆

    • @uttu2008
      @uttu2008 หลายเดือนก่อน

      Sir we can solve it by binomial method by breaking 25 as 17+8, 19 as 17+2, 2^some as (17-1)^some. At the end we only get multiple of 17..
      Is my method correct?

  • @anshugoel1765
    @anshugoel1765 หลายเดือนก่อน +17

    3:01 proof
    By remainder theorem
    Let f(a,b)=a^2n-b^2n
    Put a=b so the function becomes zero which shows that a-b is a factor of this expression
    Put a=-b
    Again the function becomes zero so a+b is also a factor

    • @dheerendrayadav8335
      @dheerendrayadav8335 หลายเดือนก่อน +6

      Everybody is probably just copying from Google and using that modulo thingy/lengthy binomial expression
      But here is a person who used a basic method to prove this logically

    • @Quartzite
      @Quartzite หลายเดือนก่อน +2

      ​@@dheerendrayadav8335 yes , see first forget about the big 190 power. Start with 1, the answer is 0. Then put 2 as power for 25, 19, 8 and 2. You'll get 204, which is divisible by 17, so it is also divisible by 34, you can check further by 3, but then you'll reach the same conclusion. The above
      I don't like to get into abstraction cause I'm lazy, anyone can derive the formula or something. But this is just as easy as that.

    • @xninja2369
      @xninja2369 หลายเดือนก่อน

      Bro but this is verfication not proof 😅 , there is difference between those two​@@dheerendrayadav8335

  • @dread8478
    @dread8478 หลายเดือนก่อน +7

    Congruence Modulo joins the chat 👽

  • @muskanbansal4909
    @muskanbansal4909 หลายเดือนก่อน +14

    (a^n)²-(b^n)²=(a^n-b^n)(a^n+b^n)
    (a^n-b^n) can easily be proved as divisible by (a-b) by long division
    While dividing we get few terms of quotient as
    a^(n-1)b⁰ + a^(n-2) b^1 + a^(n-3)b^2 ........a¹b^(n-2)+a⁰b^(n-1)
    And remainder as zero!

  • @akaalkiratsingh
    @akaalkiratsingh หลายเดือนก่อน +6

    We know that
    A^n-1 * B^1 + A^n-2 * B^2 ...... + A^1 * B^n-1 = (A^n - B^n) /( A - B) [by gp sum]
    Hence (A^n - B^n) is divisible by (A - B) [ LHS is just a some of integers i.e. also integer]

  • @jatin2008-d6u
    @jatin2008-d6u หลายเดือนก่อน +5

    We can write b^n as ( a-(a-b))^n and then if we open the binomial , considering a = x and (a-b) = y then this goes as
    b^n = a^n -nC1.a^n-1.(a-b) + ...
    Multiply both sides by - and shift a^n on the left side then this becomes
    a^n - b^n = nC1.a^n-1.(a-b)..
    Take a-b as common from the binomial then we get
    a^n - b^n = (a-b)k where k is some integer
    Therefore hence proved a^n - b^n is divisible by a-b , ( I know there might be some error in the proof but still gave it a fair try though😅)

  • @kavishkumar9407
    @kavishkumar9407 หลายเดือนก่อน +3

    Here we can take pairs satisfying (x^2n - y^2n) which will be divisible by x-y hence following this method for each possible pair we will get that the number will be divisible by 17,6 and their LCM(17,6)=106 will be the least number for which we will have to check divisibility hence answer A
    This was the solution I found to be shorter.

  • @ridhamsheth4546
    @ridhamsheth4546 หลายเดือนก่อน +51

    Congruence modulo

  • @Anant-c2c
    @Anant-c2c หลายเดือนก่อน +38

    Here we ioqm student get ahead. Congurence modulo🔥

    • @vamshitarun4399
      @vamshitarun4399 หลายเดือนก่อน

      tu tg pe famous hogya

    • @Anant-c2c
      @Anant-c2c หลายเดือนก่อน

      @vamshitarun4399 kha par?

    • @nitinpandey4442
      @nitinpandey4442 หลายเดือนก่อน

      Sahi kaha 😅

    • @shwetasinha5953
      @shwetasinha5953 หลายเดือนก่อน

      Wahi, congruence se aasani se ho jayega

    • @arjunsahni8975
      @arjunsahni8975 หลายเดือนก่อน

      Mai bhi yahi soch raha tha

  • @expmaths
    @expmaths หลายเดือนก่อน +3

    Same approach just using congruent modulo or direct writing the remainders is faster.
    Like for checking with 17 the expression will be congruent to:
    (-8)^(190) -(-2) ^190 - 8^190 +2^190. U can see Everything cancels out and u get 0 as remainder.
    Similar approach for 7 gives:
    4^190 - (-2)^190 - 1^190 +2 ^190
    So we are left with only 4^190 -1
    And from there same approach as yours to get the remainder as 3.

  • @strangeboysam2594
    @strangeboysam2594 หลายเดือนก่อน +1

    1:40 but n ki value Even ya odd dono ho sakti hai, example n = 3 leke bhi a^3-b^3 divisible ho raha hai a-b se
    also a^n + b^n is divisible by a+b for n belongs to odd number, this can easily be proved by expanding a^n +b^n/a+b as sum of gp
    i.e a^n-1[1-(-b/a)^n]/1-(-b/a)

  • @curious.mathematical.physics
    @curious.mathematical.physics หลายเดือนก่อน +1

    Proof:
    Consider
    f(x)=x^2n-b^2n
    It is divisible by x-b
    Put x=a and we proved it

    • @diteshsingh9588
      @diteshsingh9588 หลายเดือนก่อน

      Umm brother.. we have to prove that how your f(x) = x^2n - b^2n is divisible by x-b..
      I think.

  • @vatsalvarenya349
    @vatsalvarenya349 หลายเดือนก่อน +7

    Mera (D) aaya
    Pehle 25 and 8 aur 19 and 2 mein a^2-b^2 = (a+b)(a-b) lagaya
    isse 17 ka multiple aa gaya
    then second factor mein a^odd-b^odd is divisible by a-b lagaya

  • @bhavyasinghal8976
    @bhavyasinghal8976 หลายเดือนก่อน +4

    Bhaiya 4:02 pe (-19¹⁹⁰) hai aur fir jab use 21-2 likhenge to bahar ke minus ki vajah se ultimately (+2¹⁹⁰) rahega Aur firr +2¹⁹⁰ cross cancel nahi hoga

  • @AjaySingh126aZ
    @AjaySingh126aZ หลายเดือนก่อน +4

    Can be easily prooved by congruent modullo

  • @dcttournaments5262
    @dcttournaments5262 หลายเดือนก่อน +2

    when we divide apower2n-bpowe2n by a-b. a^2n-b^2n= (a-b)(a^(2n-1)+ b^(2n-1)) + ab(a^(2n-2) - b^(2n-2)....now i replaced 2n with 2n-2 to obtain a^(2n-2) - b^(2n-2)=(a-b)(a^(2n-3)+b^(2n-3) + ab(a^(2n-4) - b^(2n-4)).substitue this in prev eqn.a series is formed with 2 power dec(hence even power required) till power o.adding one component of a-b each time...

  • @shravan8292
    @shravan8292 11 วันที่ผ่านมา

    a^2n-b^2n=(a^n+b^n)(a^n-b^n)
    a^n-b^n can be further simplified into (a^n/2-b^n/2)(a^n/2+b^n/2) so on and so forth
    so if n is even eventually this will simplify to (a+b)(a-b) and hence u ll get a long list of all the addition terms times (a-b) so and a and b are integers and hence it will be some k(a-b)
    hence proved
    hope this makes sense lol hard to explain via comments

  • @PriyanshuChhillar-rt6jz
    @PriyanshuChhillar-rt6jz หลายเดือนก่อน +3

    Bro your given proof is done with 2 methods and thankx for such a op ques bro your ques literally open brain

  • @Naitik_Barnwal
    @Naitik_Barnwal หลายเดือนก่อน +6

    6:51 bhaiya ka whatsapp profile description, battery about to die😂

  • @VedantDikshit
    @VedantDikshit หลายเดือนก่อน +1

    3:02 (a²)^n-(b²)^n=(a²-b²)[a^2(n-1)+a^2(n-2)b^2+.......+b^2(n-1)]
    And since (a²-b²)=(a-b)(a+b) thus (a^2n-b^2n) is divisible by (a-b)....
    Correct me if I am wrong somewhere.

  • @RubyKumari-rp6sr
    @RubyKumari-rp6sr หลายเดือนก่อน +5

    dimag me ek approach aa raha hai ki sayad summation of gp ke kuch ho isse ache se dekhta hun

  • @FAUXVIKINGIITB
    @FAUXVIKINGIITB หลายเดือนก่อน

    Ans-d
    The given expression is divisible by 2,3,6,17 also, it is not divisible by 4 hence, the only option that satisfies is d.
    It should also be divisible by 34 i suppose.

  • @ojosshiroy8544
    @ojosshiroy8544 หลายเดือนก่อน +1

    a^2n-b^2n is divisible by a-b can be proved by binomial theorem. It's probably one of the core things you're taught in this chapter.

  • @mokshjain7403
    @mokshjain7403 หลายเดือนก่อน +1

    Lekin bhaiya hum aise bhi kar sakte kya ki kyoki kisis bhi number ka divisibility toh hum check kar hi sakte hai toh isliye woh unsure waale options toh nikal hi Gaye aur phir kyoki b bhi nhi hoga toh directly answer d hi deduce ho jata hai
    Isliye answer d. Ye within less than 15 sec ho jata.

  • @Mr.Moody-d2e
    @Mr.Moody-d2e หลายเดือนก่อน

    If n=1 then it will become a^2-b^2 which will be (a-b)(a+b) which is dividible by a-b and clearly all even power will be divisible the same way

  • @sakshamsrivastava4710
    @sakshamsrivastava4710 หลายเดือนก่อน

    i am 11th grader jee aspirant what i found was ki a^2n-b^2n ek tarah se aise kuch hoga (a-b)(a+b)(a^2+b^2)(a^4+b^4) by simple algebraic identity of a^2-b^2 and from here we see this expression is divisible by (a-b)

  • @arkitech1969
    @arkitech1969 หลายเดือนก่อน +1

    divisible by 25-8, -19+2,

  • @shivamchouhan5077
    @shivamchouhan5077 หลายเดือนก่อน +1

    If you use congruence modulo,then this question is pretty easy

  • @ChinmayBarsaiyan
    @ChinmayBarsaiyan หลายเดือนก่อน +3

    Bhaiya conics concept cruch when ?

  • @kabirsingh4155
    @kabirsingh4155 หลายเดือนก่อน +1

    If you are a jee asirant ek important theorem yaad karlo aise kisi bhi question mai kam aayega agar tumhe ek p prime se divide hota hai ya nahi ye nikalna hai to jo power hain usko us number se replace kardo jo uska remaider aayega (p-1) se or base number ko remainder of p se replace kardo jaise is question mai 7 ka check karne ke liye above operation ke baad(190=4:6) 256-625-1+16=-354 which is not divisible by 7 ye ek approach ye sare remainder wale q tackle ho jaenge aur tumhe binmial ki shayad hi jarurat padegi

  • @Gyan-fx9zx
    @Gyan-fx9zx หลายเดือนก่อน +3

    Shortest method use these theorems:
    1) Fermat's little theorem
    2) Euler's totient theorem
    Of course not in jee syllabi

    • @foreveradirectioner5985
      @foreveradirectioner5985 หลายเดือนก่อน

      Bro ek baar karke bhej sakte ho, modulo se?

    • @foreveradirectioner5985
      @foreveradirectioner5985 หลายเดือนก่อน

      Bro ek baar kar sakte modulo se?

    • @nilusingh377
      @nilusingh377 หลายเดือนก่อน

      ​@@foreveradirectioner5985take mod17 entire equation, 17 is prime so from fermat little theorem
      a^16=1mod17
      Followed by simplification.

    • @foreveradirectioner5985
      @foreveradirectioner5985 หลายเดือนก่อน

      @@nilusingh377 Ohk, thanks so much!

  • @abhinavgupta1521
    @abhinavgupta1521 หลายเดือนก่อน

    for shorter method u can use modulo method, it is a property generally used in olympiads but that property is basically derived from binomial expansions and it is just what u said but by property it is considered to be known already
    basically u can write any number as the no it will leave remainder and leave the power as it is and try converting all numbers into +1,+2,-1,-2 to ease down calculation and u can solve almost every remainder question within 2 min, this one i especially solved before u started solving without pausing vid

    • @naqihaider849
      @naqihaider849 หลายเดือนก่อน

      exactly congurence modulo se easily ho jaega but uske liye number theory padhna padega

  • @saumyatheallrounder6193
    @saumyatheallrounder6193 หลายเดือนก่อน

    Congduence modulo se ho jata hai

  • @ashutosh4189
    @ashutosh4189 หลายเดือนก่อน

    for proof you asked : let take common a^2n from expresssion, then divide , and multply term with (1-b/a ) , this create a normal gp(a^2n+.....b^2n) *(1-b/a) , clearly div, by (a-b )

  • @collectregularly
    @collectregularly หลายเดือนก่อน +1

    Idk I enjoyed? Why this happened as I See u didn't edit the blundered part. I think u were fully immersed into it That's why u made it soo smooth for us.

  • @Khuntapurva
    @Khuntapurva หลายเดือนก่อน

    Proof
    Consider a GP
    x^n-1+(x^n-2)y+(x^n-3)y^2+......+y^n-1
    Do its sum and simplify it result will be magnificient

  • @AdityaRaj-h8q
    @AdityaRaj-h8q หลายเดือนก่อน +1

    ANS IS (D)

  • @Shubhu519
    @Shubhu519 หลายเดือนก่อน +1

    3:59 pe + 2^190 hoga na sir?

  • @saileshachutha7951
    @saileshachutha7951 หลายเดือนก่อน +1

    What the hell is this modulo??????
    Please explain it!!!!!!!

    • @dakshhooda9925
      @dakshhooda9925 หลายเดือนก่อน

      It is a part of number theory which is not taught
      in routine or jee maths it is taught in Olympiad preparation it is a very fast method for finding remainders I am in class 10 and this q in less than 2 mints

  • @rajeevpandey6220
    @rajeevpandey6220 หลายเดือนก่อน +3

    Consider the polynomial (P(x) = a^n - b^n). Notice that (P(b) = 0), which means (x - b) is a factor of (P(x)). Thus, (a - b) is a factor of (a^n - b^n).
    In more straightforward terms, for any integers (a) and (b), when you subtract (b^n) from (a^n), the result can always be expressed as a product of (a - b) and another polynomial. Hence, (a^n - b^n) is always divisible by (a - b).
    Does this make sense or not 😅
    Please reply ❤ .
    Thank you ❤
    And yes I have a shorter method then this maybe 5to6 lines .

  • @girishchandrasrivastava12thA
    @girishchandrasrivastava12thA 14 วันที่ผ่านมา

    25 ≡ 8 (mod 17)
    19 ≡ 2 (mod 17)
    8 ≡ 8 (mod 17)
    2 ≡ 2 (mod 17)
    Ab isme
    ((8^(190) -2^(190) -8^(190) +2^(190)) (mod 17)
    Simply kr lo
    0(mod 17)
    Matlb hai ab 28 mein bhi kr lo nahi hoga
    I know ki yeh topic OLYMPIAD ka hai but ek true JEE aspirant tabhi hota hai jab woh har approach ko seekhe aur chota sa hai yaar yeh toh tumhaara B. T. easy kr dega seekh lo jaake 😊

  • @lonehunter007
    @lonehunter007 หลายเดือนก่อน

    4:23 kaise bhaiya??? wo to 2^190 hi hoga...bahar ek minus tha...aapne 4:28 me bhi to -21Y bithaya hai
    aise kaise chalega😭😭

  • @pushkarnarware
    @pushkarnarware หลายเดือนก่อน +2

    Woh 17 and 34 wale toh ho gye the pr 28 wala nhi hua tha

  • @diteshsingh9588
    @diteshsingh9588 หลายเดือนก่อน +3

    Can we prove it this way?
    We know, a²-b² = (a+b)(a-b)
    Similarly, a⁴-b⁴ = (a²+b²)(a²-b²)
    Hence.. since in a^2n - b^2n
    The 2n part always gives an even number.. which in turn gives an even factor in terms like this.. like say for example
    In this, a^2n - b^2n .. n=5
    then, a¹⁰ - b¹⁰ = (a⁵-b⁵)(a⁵+b⁵)
    This a⁵-b⁵ can be further simplified into (a-b)(a⁴ + a³b + a²b² + ab³ + b⁴)
    Thus.. we will always get (a-b) as a factor of a^2n - b^2n

  • @anonyme_3
    @anonyme_3 หลายเดือนก่อน +1

    Solve this using modulo concept

  • @pranavnarwade9670
    @pranavnarwade9670 หลายเดือนก่อน +1

    Sir pls pls explain more of revision ... i mean explain more about revision course in how much time will it over and all
    I wanna buy it but just a little confused...

  • @pranavaggarwal7965
    @pranavaggarwal7965 หลายเดือนก่อน

    Well you can use modulu as you know many aspirant give exam of ioqm these are the basic question like remainder so if you use moduluit will take around 2 min but it will get the answer but i love your method

  • @ghostisalive3962
    @ghostisalive3962 หลายเดือนก่อน

    Bhai property nahi bhi aati ho toh we can split 25 and 19 as 17+8 and 17-2, binomial se open karne ke baad the 8^190 and 2^190 automatically get cut so it becomes divisble by 17. Thoda dhyaan se dekhein toh it becomes divisible by 34 also as all terms have a multiple of 2

  • @itachi5061
    @itachi5061 25 วันที่ผ่านมา

    a2n -b2n ÷ a-b is actually g.p sum

  • @anirudhpratapsinghchauhan
    @anirudhpratapsinghchauhan หลายเดือนก่อน

    3:01 by factor theorem we can say

  • @UnknownGhost97
    @UnknownGhost97 27 วันที่ผ่านมา

    Answer is D

  • @NitinKumar-bg4or
    @NitinKumar-bg4or หลายเดือนก่อน

    Gp ke sum se bhi proof ho jayega sum of this series
    a^n-1+a^n-2b+a^n-3b+.....+b^n-1. Is

  • @GleshawnDsouza-x9d
    @GleshawnDsouza-x9d 4 วันที่ผ่านมา

    can put it in the form x^n-1/x-1 where x is a/b and this is gp sum

  • @shlokdas9940
    @shlokdas9940 หลายเดือนก่อน

    mains mei jo sawal tha waha 14 aur 34 mei hi options diye the yaha alag kyu hai?

  • @PranavSharma-u6z
    @PranavSharma-u6z หลายเดือนก่อน

    Bhai maths ke liye kaunsi achi book rhegi??

  • @AdarshMourya410
    @AdarshMourya410 หลายเดือนก่อน +4

    Bhaiya a^(2n) - b^(2n) ko we can rewrite as (a^n)² - (b^n)² fir x²-y²= (x-y)(x+y) property use krke (a^n-b^n)(a^n+b^n) likh skte hai and (a^n-b^n) is divisible by a-b and hence pura a^(2n) - b^(2n) is divisible by a-b

    • @jeesimplified
      @jeesimplified หลายเดือนก่อน +4

      areee bhai a^n-b*n is divisible by a-b isko kese assume kariya, isko bhi u’ll have to prove.

    • @AdarshMourya410
      @AdarshMourya410 หลายเดือนก่อน

      @@jeesimplified got it , will try it again

    • @debadritoduttaedits
      @debadritoduttaedits หลายเดือนก่อน +3

      a^n = (a-b+b)^n
      Now, applying binomial theorem
      a^n = b^n + (a-b)k, where k is an integer
      Subtracting b^n from both sides
      a^n-b^n = (a-b)k
      Which implies a^n-b^n will be divisible by a-b
      Is the proof okay?

  • @harshdas4061
    @harshdas4061 หลายเดือนก่อน

    Ye maine pyqs krte time kiya tha
    First attempt me to nhi hua pr soln dekhke mja ayega

  • @ankitttt1
    @ankitttt1 หลายเดือนก่อน +3

    You are a good question😂

  • @blurryface602
    @blurryface602 หลายเดือนก่อน

    a^2n wala
    is it because after factoring we get a^n-b^n which divides a-b??

  • @adityajha2889
    @adityajha2889 หลายเดือนก่อน

    3:05 gp k sum se kiya jaaskta h

  • @monishrules6580
    @monishrules6580 หลายเดือนก่อน

    Sir just learn modulo, mod 17 is so easily then look at mod 7 very easy

  • @gamingtecherz3269
    @gamingtecherz3269 หลายเดือนก่อน

    a^n-b^n=(a-b)(a^n-1+a^n-2b+a^n-3b^2+........+a.b^n-2+b^n-1) .hence, it is divisible by a-b
    pls like and pin.

  • @jayagarwal6930
    @jayagarwal6930 หลายเดือนก่อน

    A piece of cake for oly asp

  • @priyank6356
    @priyank6356 หลายเดือนก่อน

    2:34 how to confirm that it is divisible by 34???

    • @manasonly
      @manasonly 27 วันที่ผ่านมา

      Bcz 34 is a multiple of 17

  • @VedMohod-jw3gb
    @VedMohod-jw3gb หลายเดือนก่อน

    Pta nahi sahi proof hai ya nahi but I just tried
    (a^2n -b^2n)/a-b. Isko a^2-b^2 identify se break kiya toh {(a^n -b^n)(a^n+b^n)}/a-b aise break karte gaye toh iske baad n/2 banega uske baad n/4 till n/n which is equal to 1 toh ekdam last step mein a-b numerator mein banega toh wo cut hojayega that why divisible

  • @JEE_26
    @JEE_26 หลายเดือนก่อน

    Which software are you using.

  • @n1rvan383
    @n1rvan383 หลายเดือนก่อน

    Bhai poori calculation galat hai, 2^190 cancel nahi hoga. - sign bhi hai 19^190 pe. In fact 2^191 ho jaayega

  • @uttu2008
    @uttu2008 หลายเดือนก่อน

    Sir we can solve it by binomial method by breaking 25 as 17+8, 19 as 17+2, 2^some as (17-1)^some. At the end we only get multiple of 17..
    Is my method correct?

  • @IITIAN-g9m
    @IITIAN-g9m หลายเดือนก่อน

    Sir you can solve using euler & fermat theorem

  • @sirak_s_nt
    @sirak_s_nt หลายเดือนก่อน

    Congruence modulo and ye without pen paper solved

  • @arpandutta2404
    @arpandutta2404 หลายเดือนก่อน

    This theorem was in cengage book but we ignored like our crush used to ignore us 😅 and jee gave question on this concept

  • @SeemaGupta-ob5pe
    @SeemaGupta-ob5pe หลายเดือนก่อน +5

    did it, as a IOQM student

  • @hariprakashbachchas2822
    @hariprakashbachchas2822 หลายเดือนก่อน

    Bhaiya pls continue concept crunch series

  • @ALGEO-777
    @ALGEO-777 หลายเดือนก่อน

    Bro use cogurence Modulo IT WILL become more easy

  • @zombie190
    @zombie190 หลายเดือนก่อน

    Your prove can be proved by mathematical induction

  • @titanfreefire193
    @titanfreefire193 หลายเดือนก่อน

    Congruence Modulo

  • @pratyushlokhande1200
    @pratyushlokhande1200 หลายเดือนก่อน

    Can we prove it by lmvt ?

  • @anikchakraborty92
    @anikchakraborty92 หลายเดือนก่อน +1

    Sandal bhaiya 2024 cc op

  • @annanay007
    @annanay007 หลายเดือนก่อน

    Easier than my dpp.

  • @shivx3295
    @shivx3295 หลายเดือนก่อน +1

    fermats little theorem aur khatam karo isko

  • @SagarKumar-l3k1d
    @SagarKumar-l3k1d 13 วันที่ผ่านมา

    But I got it correct 😌

  • @anshukartikeyan9146
    @anshukartikeyan9146 หลายเดือนก่อน

    no need of this for to prove it's divisible by 17.. remainder of 1st one is 16, second one is 4, third one is 1 and fourth one is 13.. add all and it's divisible by 17...

  • @Aizen-ll9oc
    @Aizen-ll9oc 17 วันที่ผ่านมา

    Ye wali property aati h. 🌚🐮

  • @shauryavardhansingh9186
    @shauryavardhansingh9186 หลายเดือนก่อน

    Euler and fermat laughing in corner

    • @IITIAN-g9m
      @IITIAN-g9m หลายเดือนก่อน

      Yes

  • @TPD_Dev
    @TPD_Dev หลายเดือนก่อน

    Solved your question for the first time just by looking at it (it was done in our class)