^=read as to the power *=read as square root Let R=27 As per question R^0+R^1+R^2+R^3+R^4+R^5=? So, The given expression will be 1+R+R^2+R^3+R^4+R^5 =(1+R)+R^2(1+R)+R^4(1+R) =(1+R)(1+R^2+R^4) =(1+R){R^4+2R^2+1 -R^2} =(1+R){(R^2+1)^2 -R^2} =(1+27){(27^2+1)^2-27^2} =28{(729+1)^2-729} =28{730)^2-729} =28{532900-729} =(30-2)×(532171) =(30×532171)-(2×532171) =15965130-1064342 =14900788...(May be )
SENSATIONAL!
Nice solution ❤
3×27^5=3×3^3×5=3×3^15=3^16
^=read as to the power
*=read as square root
Let R=27
As per question
R^0+R^1+R^2+R^3+R^4+R^5=?
So, The given expression will be
1+R+R^2+R^3+R^4+R^5
=(1+R)+R^2(1+R)+R^4(1+R)
=(1+R)(1+R^2+R^4)
=(1+R){R^4+2R^2+1 -R^2}
=(1+R){(R^2+1)^2 -R^2}
=(1+27){(27^2+1)^2-27^2}
=28{(729+1)^2-729}
=28{730)^2-729}
=28{532900-729}
=(30-2)×(532171)
=(30×532171)-(2×532171)
=15965130-1064342
=14900788...(May be )
Not may be 😀 exactly right ✅️