Find the area of the rectangle | A Very Nice Geometry Problem | Math Olympiad

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 พ.ย. 2024

ความคิดเห็น • 29

  • @imetroangola17
    @imetroangola17 20 วันที่ผ่านมา +6

    Uma bela solução! Parabéns! 🎉🎉🎉🎉

  • @imetroangola17
    @imetroangola17 19 วันที่ผ่านมา +3

    *Solution:*
    Let O be the center of the circle and we draw the segment OP, where P belongs to the side BC. Using power at a point C, we have:
    PC² = CF × CE = 4×9 → *PC=6.*
    Now, we draw the segment OT, where T belongs to AD, note that AEOT and EBPO are squares whose sides are equal to the radius R of the circle. Therefore, AE=EB=BP=R.
    By Pythagoras in ∆BEC:
    EC² = BE² + BC² = BE² + (BP+ PC)²
    9² = R² + (6+R)² = R²+36+12R+R²
    2R² + 12R = 81 - 36 = 45
    2R(R + 6) = 45 .
    note that, AB = 2R e BC = R + 6, consequently,
    *AB × BC = 45* , This is the area of rectangle ABCD.

  • @RAG981
    @RAG981 20 วันที่ผ่านมา +4

    Very nice, slick answer. Mine was more clunky. If BC is r + x, then x^2 = 4x9 = 36 so x =6. This was encouraging, so I used triangle EBC to give r^2 + (6+r)^2 = 9^2. This gave a slightly nasty answer of r = (3rt14 - 6)/2, so r+6 =(3rt14 + 6)/2, and then 2r x (r+6) = 45. Oh well!

    • @timeonly1401
      @timeonly1401 16 วันที่ผ่านมา

      It's messy to get a value of r, sure enough. But it turns out you don't need it!!
      Using your variables, r=radius & x=6:
      A(rectangle) = height * width
      = (2r)(r+6)
      = 2r^2 + 12r
      From your quadratic equation:
      r^2 + (r+6)^2 = 81
      r^2 + (r^2 + 12r + 36) = 81
      Collecting like-terms and subtracting 36 to RHS:
      2r^2 + 12r = 45
      and the LHS is EXACTLY the expression we got for area of the rectangle!
      A(rectangle) = 45
      Done!!

  • @jimlocke9320
    @jimlocke9320 20 วันที่ผ่านมา +4

    Let the point of tangency of BC and the circle be point M. Then, applying the tangent secant theorem, (CM)² = (CF)(CE) = (4)(4 + 5) = 36 and CM = 6. Let the radius of the circle be r. Then, EB = MB = r. Apply the Pythagorean theorem to ΔBCE: (EB)² + (BC)² = (9)², r² + (r + 6)² = 81, 2r² + 12r - 45 = 0. The positive root, simplified, is r = √(31.5) - 3. AB = 2r = 2(√(31.5) - 3). BC = r + 6 = √(31.5) + 3. Area of ABCD = (AB)(BC) = 2(√(31.5) - 3)(√(31.5) + 3) = 2(31.5 - 9) = 2(22.5) = 45, as Math Booster also found.
    Checking the comments, I find that RAG981 may have solved it the same way.

    • @marioalb9726
      @marioalb9726 19 วันที่ผ่านมา +1

      cos α = 5/2R = b/(5+4)
      A = b.h= b.2R= 5.(5+4)
      A = 45 cm² ( Solved √ )

    • @nexen1041
      @nexen1041 19 วันที่ผ่านมา

      I solved it the same way you did. It was time consuming.
      Good thinking, nevertheless

    • @jimlocke9320
      @jimlocke9320 19 วันที่ผ่านมา

      Thanks for your comments! I think this is the more straightforward way to solve the problem, but the equations include 2 radicals. Luckily, we get a product of form (a - b)(a + b) = a² - b², so the square roots go away. Math Booster's solution avoids the radicals also, but, in my opinion, it takes a lot of creativity to find his solution!

    • @Z-eng0
      @Z-eng0 16 วันที่ผ่านมา

      Well you probably made some unintentional spelling mistakes while writing the comment, but that's exactly the method I used to do it, just use the tangent secant theorem to find length from C to bottom tangency point, then the rest of the rectangle length would be equal to the radius (can be proved by drawing some lines to complete a square and prove it's a square EONB but I won't bother getting into it here) as well as EB which is also r, and using pythagoras' theorem we can find r, multiply 2r by r+6 and we get the area

  • @michaeldoerr5810
    @michaeldoerr5810 20 วันที่ผ่านมา +2

    The area is 45 units square. Also I have noticed something that I should have thought about: delta EFP and delta EQC are similar because these triangles are NOT opposite to one another. This is different from one of the last two problems on this channel which showed HL congruence. I hope that this counts as a sufficient reason being that shows why and how similar triangles correspond to the area of the square.

  • @marioalb9726
    @marioalb9726 19 วันที่ผ่านมา +2

    Similarity of triangles:
    cos α = 5/2R = b/(5+4)
    A = b.h= b.2R= 5.(5+4)
    A = 45 cm² ( Solved √ )

    • @nexen1041
      @nexen1041 19 วันที่ผ่านมา +1

      This was the easiest and shortest solition. I strongly recommend pinning ur comment
      PERFECT 👍

    • @marioalb9726
      @marioalb9726 19 วันที่ผ่านมา

      @nexen1041
      Thanks

  • @MorgKev
    @MorgKev 17 วันที่ผ่านมา

    Drop perpendicular from O onto chord EF. The little triangle formed is similar to triangle EBC. Let NC = x. Then (r+x)/9 = 2.5/r. This gives r^2 + rx =22.5 and 2r^2 + 2rx = 45. But this is the area since the rectangle has sides (r+x) and 2r.

  • @ВерцинГеториг-ч5ь
    @ВерцинГеториг-ч5ь 19 วันที่ผ่านมา

    АD=BC=a , AB=DC=2r . Area ADCD=2ar , theorem about tangent and secant lines coming from one point : (a-r)*2=CExCF , a*2+r*2-2ar=(5+4)4 (1) . From a triangle BCE according to the Pythagorean theorem - CE*2=r*2+a*2 , r*2+a*2=9*2 , substituting into eguation (1) - 9*2-2ar=9x4 , 2ar=81-36=45 . Area ABCD=45 .

  • @zygmuntserafin3371
    @zygmuntserafin3371 19 วันที่ผ่านมา +1

    A=AB*BC=2r*x. r^2+x^2=81. (x-r)^2=9*4=36. (x-r)^2=x^2 + r^2 - 2r*x = 81 -A = 36.
    A = 45.

    • @SGuerra
      @SGuerra 19 วันที่ผ่านมา +1

      🎉🎉🎉 A mesma solução que eu encontrei 🎉🎉🎉

  • @xaviersoenen4460
    @xaviersoenen4460 7 วันที่ผ่านมา

    puissance du point C par rapport au cercle= 4(4+5)=36= OQ²
    BC=6+r et BC² =EC²-r²=(6+r)²=9²-r²
    2r²+12r+36=81
    2r(r+6)=45= surface du rectangle

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 19 วันที่ผ่านมา

    (5)^2 (4)^2rm={25+16}=41 {60°A60°B+60°C+60°D}=360°ABCD/41= 90ABCD 3^30 3^3^10 1^3^2^5 1^3^2^1 3^2 (ABCD ➖ 3ABCD+2)

  • @alexnikola7520
    @alexnikola7520 19 วันที่ผ่านมา

    NC=6... r^2+(r+6)^2=81... 2r^2+12r=45... S=2r(r+6)=2r^2+12r=45

  • @SGuerra
    @SGuerra 19 วันที่ผ่านมา +1

    Uau! Que questão bonita. Eu encontrei uma solução um pouco mais rápida que a sua. Parabéns pela escolha! 👏👏👏 Brasil 9 de novembro de 2024.

  • @AmirgabYT2185
    @AmirgabYT2185 20 วันที่ผ่านมา +2

    S(ABCD)=45 square units

  • @soli9mana-soli4953
    @soli9mana-soli4953 19 วันที่ผ่านมา

    2r:9=5:base
    2r=height
    Base *height =9*5=45

    • @marioalb9726
      @marioalb9726 19 วันที่ผ่านมา +2

      Exactly!!! Very simple, without complications !!
      Congratulations !!
      My solution :
      cos α = 5/2R = b/(5+4)
      A = b.h= b.2R= 5.(5+4)
      A = 45 cm² ( Solved √ )
      Exactly the same !!

    • @soli9mana-soli4953
      @soli9mana-soli4953 19 วันที่ผ่านมา

      @ thank you 🙏 Yes I know you like the shorter the better

  • @yakupbuyankara5903
    @yakupbuyankara5903 18 วันที่ผ่านมา

    45

  • @giuseppemalaguti435
    @giuseppemalaguti435 20 วันที่ผ่านมา +1

    r:9=x:4...x=FH=4r/9..(Hprooezione di F)...risulta arcsin(5r/9/5)=arccos(5/2r)..r^2=81/2-9√14..b(base)=√(81-(81/2-9√14))=√(81/2+9√14)..Arett=b*2r=2√(40,5^2-81*14)=2*22,5=45

  • @xz1891
    @xz1891 12 วันที่ผ่านมา

    Too clumsy,
    4*(4+5)= tangent line sq, so tangent line =6. Let r is rad, so rectangle area =(6+r)*2r= 12r+ (2r) sq. Use Gougu theorem, r sq + (6+r) sq =81, expand, 12r+ (2r) sq -45=0. NO NEED TO SOLVE THE EQ, ang the 1st 2 terms is the area of rectangle, so =45

  • @caperider1160
    @caperider1160 18 วันที่ผ่านมา

    Is it given that the point E is touching the tangent?