Differential Forms | The Hodge operator via an inner product.

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 พ.ย. 2024

ความคิดเห็น • 45

  • @zhengliheng
    @zhengliheng ปีที่แล้ว +6

    For those who get lost around 14:30, the RHS of that equation is actually the Leibniz formula of a determinant. So that the inner product between m-forms can be more neatly rewritten as:
    = det(),
    where on the right-hand side is the p-q component of the determinant. And you may then understand the following examples bearing in mind that Michael is expanding this determinant term by term.

    • @Eye-vp5de
      @Eye-vp5de ปีที่แล้ว

      Thanks, even though I understood Michaels explanation, yours is significantly simpler

  • @chawnneal3103
    @chawnneal3103 11 หลายเดือนก่อน +2

    at 19:33 for anyone confused about symmetric groups, see Contemporary Abstract Algebra ~ Gallian. {(1),(1 2)} is cycle notation ((1): 1->1, 2->2; (1 2): 1 -> 2, 2->1; ). Even and Odd refers to the amount of 2 cycles each element ( each element is a permutation) can be broken into. (1) = (1 2)(1 2), thus 2, 2 cycles, thus even, (1 2) = (1 2), thus 1, 2 cycle, thus odd.
    Hope that helps, thanks so much for this series, it's helping me with this FEM course and Hodge Laplacian.

  • @twistedsector
    @twistedsector 4 ปีที่แล้ว +16

    Can't wait for the diff-forms Maxwell's Equations formulation!

  • @shuewingtam6210
    @shuewingtam6210 3 ปีที่แล้ว +5

    At 10:49 the equal sign= should be corrected as + plus sign.

  • @miguelaphan58
    @miguelaphan58 7 หลายเดือนก่อน +1

    ..inded, the most brillant exposición in this subject in the whole internet.. at least in wéstern civilization !!

  • @youtubeuser8232
    @youtubeuser8232 4 ปีที่แล้ว +5

    Great video!
    Please continue making these videos on more advanced topics, even if people, sadly, don't watch them very much.

  • @oni8337
    @oni8337 11 หลายเดือนก่อน

    The matrix defined in 12:08 is actually just the Gram matrix for those elementary 1-forms and the formula in 15:20 is the determinant of the matrix whose entries are specifically only the entries in the Gram matrix corresponding to the multi-indices of the m-forms that you're taking the inner product of.

  • @johnsalkeld1088
    @johnsalkeld1088 3 ปีที่แล้ว +2

    Have you reviewed hestenes geometric algebra? It allows for the volume component to act as an imaginary element and so we get a real algebra containing the complex algebras as sub algebras. Additionally the geometric product is ^ + . And is written xy = x^y +x.y on the vectors, so the algebra is graded on all dimensions - it enables spinous and relativistic sub algebras as well. Very interesting and very natural.

  • @rfMarinheiro
    @rfMarinheiro 4 ปีที่แล้ว

    We've already seen that b^a can be written in terms of a^b (multiplying by -1 depending only on their ranks). This means that you could write that expression as (*a) ^ b = w, which is a bit more easier to remember I guess. Any particular reason why you presented it in a different way?

  • @rfMarinheiro
    @rfMarinheiro 4 ปีที่แล้ว +5

    Is there any reason for you to introduce the extension of the inner product using that formula instead of using the determinant of the matrix A_ij = ?
    The result should be the same, but I guess most folks are pretty familiar on how to compute determinants.

    • @Andrew-ri5vs
      @Andrew-ri5vs 11 หลายเดือนก่อน

      i know i’m necroing but the reason is the same as why m-forms are evaluated the way they are, and what the exterior product represents

  • @JalebJay
    @JalebJay 4 ปีที่แล้ว +9

    27:35 Isn't = 3?

  • @emilyliedtke7059
    @emilyliedtke7059 ปีที่แล้ว +1

    Wouldn't that gnarly formula simplify significantly if we just wrote it as the determinant of a Matrix via Leibnitz's Formula?

  • @diegotristan8234
    @diegotristan8234 4 ปีที่แล้ว +3

    Which playlist does this video belong to?
    So I can see the videos for understanding this one...

    • @noahtaul
      @noahtaul 4 ปีที่แล้ว

      Hello, click here: th-cam.com/play/PL22w63XsKjqzQZtDZO_9s2HEMRJnaOTX7.html

    • @malawigw
      @malawigw 4 ปีที่แล้ว +3

      Differential forms of course th-cam.com/video/PaWj0WxUxGg/w-d-xo.html

    • @diegotristan8234
      @diegotristan8234 4 ปีที่แล้ว

      Glenn wouda Thanks!

  • @JernejBarbic
    @JernejBarbic ปีที่แล้ว

    In the Better definition of the Hodge star, do you obtain different Hodge stars for different k-form inner products? Or is it always the same Hodge star operator, regardless of *which* k-form inner product is used?

  • @eirhnhmarava811
    @eirhnhmarava811 4 ปีที่แล้ว

    Could you make a video on Hodge cycles and on Hodge conjecture?!!

  • @bobdowling6932
    @bobdowling6932 4 ปีที่แล้ว +1

    But *why* is that the lift of a 1-form inner product to an m-form inner product?

  • @goodplacetostop2973
    @goodplacetostop2973 4 ปีที่แล้ว +4

    28:41

  • @accountname1047
    @accountname1047 4 ปีที่แล้ว

    Does the inner product formula come from more general representation theory? This reminds me of Young's Tableaux/Tabloids and the rep theory of the symmetric group

  • @lezcanoXD
    @lezcanoXD 4 ปีที่แล้ว +1

    Shouldn't be the product in 16:00 symmetric positive-definite? The matrix in there has < 0, so it can't be positive definite. Or is all this series with views to pseudo-riemannian geometry?

    • @PhilipWarton
      @PhilipWarton 3 ปีที่แล้ว

      No, there are exceptions where you do not have a positive-definite psuedometric, such as lorentz space

  • @aadfg0
    @aadfg0 4 ปีที่แล้ว +3

    asnwer dude hasn't posted yet? Time to fill in. asnwer = HODGE.

  • @szpaqu1153
    @szpaqu1153 หลายเดือนก่อน

    Take a shot every time he says "wedge" 🤣
    (do not. I will not cover your hospital fees💀).

  • @hewwo3743
    @hewwo3743 3 ปีที่แล้ว +1

    if i don’t really understand any of this but i want to what video should i watch you think?

    • @FranFerioli
      @FranFerioli 3 ปีที่แล้ว +2

      Try the Differential forms of course:
      th-cam.com/video/PaWj0WxUxGg/w-d-xo.html

    • @hewwo3743
      @hewwo3743 3 ปีที่แล้ว

      @@FranFerioli thank you!!

  • @frankreashore
    @frankreashore 3 ปีที่แล้ว

    Great video.

  • @LucaIlarioCarbonini
    @LucaIlarioCarbonini 4 ปีที่แล้ว

    I'm not ready for THIS approach, had to see the video twice and still wondering how the big scheme should look.

  • @tensorfeld295
    @tensorfeld295 4 ปีที่แล้ว

    Great Videos! :D

  • @tonysplodge44
    @tonysplodge44 4 ปีที่แล้ว +3

    Did anyone else start at the top by thinking they had to go back and watch the Reca I video first? Only me, I suspect.

  • @asitisj
    @asitisj 3 ปีที่แล้ว

    What do you even mean by example implies the definition :O

  • @MarkusDarkess
    @MarkusDarkess 4 ปีที่แล้ว

    At 17:40
    Why not just say you used the foil method?
    Great video and easier to read.
    The 3 form. Seems new. :)
    But Seems similar to:
    x1+y3+z6=n
    (But no memory of using a foil method for it so it's nice see the method being defined. )

  • @FranFerioli
    @FranFerioli 3 ปีที่แล้ว

    This is about the point where I wish I was smarter.

  • @arvindsrinivasan424
    @arvindsrinivasan424 4 ปีที่แล้ว

    🔥🔥🔥

  • @raymondchou9550
    @raymondchou9550 3 ปีที่แล้ว

    That was indeed a good place to stop

  • @reinerwilhelms-tricarico344
    @reinerwilhelms-tricarico344 ปีที่แล้ว

    Someone probably wrote a Python program for this.

    • @davidgillies620
      @davidgillies620 6 หลายเดือนก่อน

      Mathematica. It was very easy.