The Derivative Is Always 0?

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ก.พ. 2025
  • How can we write arctan(1/x) in terms of arctan(x)?

ความคิดเห็น • 6

  • @jasimmathsandphysics
    @jasimmathsandphysics 5 วันที่ผ่านมา +1

    for the question at the end, I considered a right angled triangle with one leg of length x and hypotenuse of length 1. Then defined angles a and b such that cos(a)=x/1 and sin(b)=x/1 and a+b+pi/2=pi. From here it’s trivial and we can see that the answer should be pi/2. However we should be careful because this is only true if x>0 or x=0.
    The easier way is to obviously substitute values. x=-1 gives arccos(x)=pi and arcsin(x)=-pi/2 which sums to pi/2. At x=0 it is also equal to pi/2. Therefore there are no discontinuities and the sum of arccos and arcsin is equal to pi/2.

    • @exp_ert_math
      @exp_ert_math  5 วันที่ผ่านมา

      @jasimmathsandphysics Nice geometric proof! Although, yes, it mainly works for positive x. For the second method you stated, you would need to show that the derivative is always 0 to make it evident that the function is constant; only then can you sub a point to conclude the function is always pi/2

    • @jasimmathsandphysics
      @jasimmathsandphysics 5 วันที่ผ่านมา +2

      @ I mean yeah. The only reason I didn’t differentiate was because I thought it would be obvious from the topic of the video 😂

  • @jimbyjuice22
    @jimbyjuice22 หลายเดือนก่อน +1

    🔥🔥🔥

  • @amzadali9338
    @amzadali9338 27 วันที่ผ่านมา +2

  • @Michael_JM
    @Michael_JM 9 วันที่ผ่านมา

    Glad to be here relatively early