ไม่สามารถเล่นวิดีโอนี้
ขออภัยในความไม่สะดวก

How Richard Feynman would solve this awesome golden integral

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ก.พ. 2023
  • Here's another awesome application of Feynman's trick to an aesthetically pleasing integral involving the golden ratio. The results are just as pleasing as the solution development.

ความคิดเห็น • 24

  • @GreenMeansGOF
    @GreenMeansGOF ปีที่แล้ว +14

    φ^2(3φ-4)
    =(φ+1)(3φ-4)
    =3φ^2-φ-4
    =3(φ+1)-φ-4
    =2φ-1
    =sqrt(5)

  • @daddy_myers
    @daddy_myers ปีที่แล้ว +22

    Please, more of the φ series! I'm loving this!

    • @daddy_myers
      @daddy_myers ปีที่แล้ว +4

      Side note: bro really missed two awesome chances while integrating the natural logs. Could've either evaluated them TOO using Feynman's, or could've used Dr. Peyam's life-changing trick and saved a couple steps, adding onto the elegance. Regardless, it's a really beautiful integral. :)

  • @tark4027
    @tark4027 ปีที่แล้ว +14

    Final result can be simplified to sqrt(5)Ln(phi)

  • @manstuckinabox3679
    @manstuckinabox3679 ปีที่แล้ว +19

    What I like about Feynman's technique is that it doesn't just offer you a numeric answer towards a specific computation, but an insight towards not only the general solution to the problem, but how functions of a curve "change" when adding a certain parameter, it's like finding how all the family of functions behave which is quite insightful when one thinks of it in a certain way, I also always remember complex line integrals when incountered with feynman.

    • @ericthegreat7805
      @ericthegreat7805 ปีที่แล้ว +1

      Kind of like level curves from calc 3 but applied to integrals

  • @averagegamer9513
    @averagegamer9513 ปีที่แล้ว +2

    5:43, when doing the integration by parts, you can multiply the integral by 1/2*2, and choose antiderivative 2t+1 for int(2), or choose 1/2*(2t+1) =t+1/2 instead of t for the antiderivative of 1 to make it easier. This way, you still get int(ln u)du=uln u - u, the integral will differ up to a constant, which is absorbed by the constant of integration.
    Similar logic for I_2.

  • @zunaidparker
    @zunaidparker ปีที่แล้ว +2

    Another awesome integral and I love how you just smashed through everything in a very clear way that made it simple to follow.
    One small comment: in your final answer I would write the term in parentheses before the ln, not after. Otherwise it can seem like you're taking the log of the entire expression. To your last point, I think it's already in simplest terms since all the phi terms are linear in your final answer.

  • @revanthkalavala1829
    @revanthkalavala1829 ปีที่แล้ว +1

    Ln(2t+1) can be solved easily by taking 2t+1 = z and use lnx formula or if we don't remember we can solve once and reuse it for both I2 and I1

    • @lakshay3745
      @lakshay3745 10 หลายเดือนก่อน

      Or instead of substitution you can use the integral of f(ax+b) if you already know integral of f(x)

  • @zygoloid
    @zygoloid ปีที่แล้ว +3

    3φ³-4φ²=3(φ²+φ)-4φ²=-φ²+3φ=-(φ+1)+3φ=2φ-1. So I=(2φ-1)ln φ.

  • @davidt939
    @davidt939 ปีที่แล้ว

    Nice integration video! What is the app you are using?

  • @jieyuenlee1758
    @jieyuenlee1758 5 หลายเดือนก่อน

    Asume y is the golden ratio
    it is the solution to the eqn x²-x-1=0
    We can subsitutte back:y²-y-1=0
    y²=y+1---(1)
    y³=y²+y (1)×y
    y³=y+1+y----from(1)
    y³=2y+1---(2)
    3y³-4y²=3(2y+1)-4(y+1)
    =6y+3-4y-4
    =2y-1
    =sqrt5 +1-1
    =sqrt5

  • @Walczyk
    @Walczyk ปีที่แล้ว

    4:15 if you just factor a 2 out of the first term and get a denominator of t+1/2 and a factor of 4/2 in the numerator, but then you are led to 2 ln(t+1/2). Where did I go wrong?

  • @Luis-kd1sf
    @Luis-kd1sf ปีที่แล้ว +1

    You can't just switch the parcial derivative and the integral, first you have see if the parcial derivative of the function is bounded.

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      Convergence criteria here is quite trivial; I have an entire playlist on Feynman's trick and I've discussed convergence everytime it seemed rather tricky.

  • @carlosdavid7430
    @carlosdavid7430 ปีที่แล้ว +3

    i think using feynmans technique is the only way to solve that thing lol

    • @violintegral
      @violintegral ปีที่แล้ว +1

      Not the only way! If there's anything I've learned in integration, it's that there's ALWAYS another way to solve any problem. I'm too lazy to actually do the work, but I believe after the substitution t = -ln(x) --> x = e^-t and applying integration by parts, we get the form of a Frullani integral.
      Edit: it worked.

    • @maths_505
      @maths_505  ปีที่แล้ว +1

      Indeed it is!
      I still would've applied Feynman's trick to it though just cuz I'm always looking for an excuse to use it😂😂😂
      Frullani integral video coming up soon!

    • @carlosdavid7430
      @carlosdavid7430 ปีที่แล้ว

      @@maths_505 yay

    • @violintegral
      @violintegral ปีที่แล้ว

      @@maths_505 awesome

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว

    A me risulta,derivando 2 volte una I(t) opportuna 2((@+1)ln(@+1)-@)...i passaggi erano semplici,se ho sbagliato è per distrazione