Feynman's technique is INSANELY overpowered!!!

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 พ.ย. 2024

ความคิดเห็น • 65

  • @maths_505
    @maths_505  ปีที่แล้ว +22

    Note: from the 18:30 mark onwards the right hand side includes arctan(t/2) and not arctan(1/2) untill we actually plugged in t=1.
    Apologies for the error, I subconsciously drifted to the target case of I(1) while carrying out all the math correctly 😂

  • @meteor3033
    @meteor3033 ปีที่แล้ว +17

    "We are gathered here today..." LMAO THE CULT OF FEYNMANN INTEGRATION I LOVE IT

  • @dutchie265
    @dutchie265 ปีที่แล้ว +27

    Towards the end, it is written inverse tan of 1/2. However, this should be inverse tan of t/2.
    Final result stays the same, as t=1.

  • @frankargenti
    @frankargenti ปีที่แล้ว +4

    SO many smart people and no one pointed out the mistakes he made ...... wow

  • @wagsman9999
    @wagsman9999 ปีที่แล้ว +7

    Nice. I fear I may never be skilled enough to know when to apply Feynman's technique. But it is really cool.

    • @debblez
      @debblez ปีที่แล้ว

      whenever you have a monomial in the denominator

  • @Sugarman96
    @Sugarman96 ปีที่แล้ว +3

    Here's how I'd do it with the Fourier transform. After the first u sub, you have an exponent times sin(u)/u squared, so the integral I is half the integral of e^-|u| times sin(u)/u squared, so you use Plancherel theorem to turn it in the integral of a triangle windows function times 1/(1+x^2), which is already easier

  • @erwanquintin3057
    @erwanquintin3057 หลายเดือนก่อน

    Excellent video, thanks. I would mention that those I’’’ integrals are Laplace transforms. Never a bad time to point out the power of those things.

  • @two697
    @two697 ปีที่แล้ว +4

    Parameterising it as e^(-u)sin^2(tu)/u^2 actually makes the ensuing working out much nicer. You get that I''(t)=2/(1+4t^2) with I(0)=I'(0)=0 and directly end up with the nicer looking solution of arctan(2)-1/4ln5

  • @元兒醬
    @元兒醬 16 วันที่ผ่านมา +1

    2:30 put t into sin^2tx and you'll get a quicker answer

  • @manskiptruck
    @manskiptruck ปีที่แล้ว +1

    Also works really nicely if you define the parameter inside the sine and just immediately differentiate twice with respect to the parameter. You end up integrating 2/x^(2)cos(2a ln(x)) which can be done by parts, where [a] was my parameter.

    • @davidarencibia7628
      @davidarencibia7628 10 หลายเดือนก่อน

      I was scared to integrate cos(2nlnx) and then integrate that more times

  • @shayanfazeli8211
    @shayanfazeli8211 ปีที่แล้ว +1

    love the channel, keep on keeping on!

  • @MathOrient
    @MathOrient ปีที่แล้ว +2

    Year 2050: "Feynman's technique is still working 😆"

  • @fengshengqin6993
    @fengshengqin6993 2 หลายเดือนก่อน

    Wow ,really crazy integral !

  • @gibbogle
    @gibbogle ปีที่แล้ว

    Excellent. A very surprising answer.

  • @zunaidparker
    @zunaidparker ปีที่แล้ว +3

    In your final step you could have written -¼ ln5 which is slightly more elegant.
    Another great video! Just keep control of your script and editing...you got a bit nervous in the middle there and started rambling 😜

    • @maths_505
      @maths_505  ปีที่แล้ว +1

      I don't like using scripts....it makes things too organized and is not the optimal way to carry out the reverse cowgirl formulation of integral calculus😂😂😂

    • @absurdengineering
      @absurdengineering ปีที่แล้ว

      @@maths_505 I support this motion :) I love the quirky format. If I wanted a dry integral calculus recitation, there’s plenty of those around. Dry works for some people, quirky works for others. Me quirky. Me likes.

  • @holyshit922
    @holyshit922 ปีที่แล้ว

    y = ln(x)
    Integration by parts with
    dv=1/y^2dy and u=e^{-u}sin^2(u)
    Express sin^2(y) as cos(2y)
    Calculate Laplace transform and evaluate it at s=1

  • @sadraderhami2628
    @sadraderhami2628 10 หลายเดือนก่อน

    It's funny that I got the exact same answer, differently. I put the alpha in the sin function and got the second derivative of it instead of changing variables first. ( which actually involved some really cool tricks that I learned from this channel as well). So anyway thanks a lot for your great content and I'd love to see more(especially if you would upload some tutorials about differential equations)

  • @yaroslavdon
    @yaroslavdon ปีที่แล้ว +3

    From 2:40 , you could probably solve it using the Laplace transform and its properties.

    • @Charliethephysicist
      @Charliethephysicist ปีที่แล้ว

      But is it not just the same procedure to evaluate the Laplace transform?

  • @joshuaiosevich3727
    @joshuaiosevich3727 3 หลายเดือนก่อน

    theres an easier way to go about this integral IMO, first we start by setting ln(x) to x getting us the integral from 0 to infty of sin^2(x)e^-x/x^2, then we actually define our integral function by putting the parameter t inside of the sin term instead of the exponential term, note for later that I(0)=0, for I'(t) we end up getting sin(2tx) inside so note again that I'(0)=0, we will have no worries over constants in this scheme. Then we differentiate one more time and we get the integral from 0 to infty of 2cos(2tx)e^-x which is equal to 2/(1+4t^2), then we integrate twice and plug in one.
    edit: my solution is no better, it's just what I came up with before I watched your solution. You literally taught me every advanced integration technqiue I know, you're the GOAT.

  • @ayhanozkan5071
    @ayhanozkan5071 ปีที่แล้ว

    I am a 56 years old electrical engineer and this channel gives me more pleasure than having sex...duh! His choice of integrals and diff equations are top notch. Keep up the good work.

  • @nicogehren6566
    @nicogehren6566 ปีที่แล้ว

    brilliant solution. thanks man !

  • @ksmith-s9f
    @ksmith-s9f หลายเดือนก่อน

    I think you have an error at about the 15:25 point...You should have 0=1/4(1)+c, which implies that c=-1/4. Although, I could be wrong.

  • @Sty5A467
    @Sty5A467 ปีที่แล้ว +2

    Where and how could I learn those ways to solve integrals??
    I mean how to learn gamma function and beta function and Feynman technique and laplace transformation...etc??

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      "You have come to the right place my child"

    • @absurdengineering
      @absurdengineering ปีที่แล้ว

      Just stay tuned to this channel I guess? 😂

  • @rayquazabtc9131
    @rayquazabtc9131 9 หลายเดือนก่อน

    Sir I didn't understand the part when you found the value of c please explain

  • @vladimir10
    @vladimir10 ปีที่แล้ว

    Awesome vids, dude!
    What I especially like is you approach, balanced between regorousity and fun.
    Don't stop!
    Can you crack professor Penn's 'members only' recent sum?

    • @maths_505
      @maths_505  ปีที่แล้ว +1

      I'll have a look at it

    • @maths_505
      @maths_505  ปีที่แล้ว

      Could you send me a link?
      I can't seem to find the members content part of his page

    • @vladimir10
      @vladimir10 ปีที่แล้ว

      @@maths_505 Neither can I find it. I saw it yesterday in my TH-cam feed and I don't see it anymore. It involved summation of Reinmann zeta of n , all over pi^n, and the RHS was something ridiculously simple like 1\(exp(2)-1). I'm not sure about the details though.

  • @GreenMeansGOF
    @GreenMeansGOF ปีที่แล้ว

    12:44 Is Dominated Convergence justified?

  • @Mr_Mundee
    @Mr_Mundee 8 หลายเดือนก่อน

    mistake: the answer is actually arctan(2)-ln(5)/4 not arctan(2)+ln(5)/4

  • @ericthegreat7805
    @ericthegreat7805 ปีที่แล้ว

    Can we do IBP with e-u and sin2u/u2 then the term containing sin is a Dirichlet integral.

  • @giuseppemalaguti435
    @giuseppemalaguti435 ปีที่แล้ว

    Uso la funzione integranda I(a) =sin(alnx) ^2.... Derivo 2 volte... I=arctg2-ln5/4 se non ho fatto errori di calcolo...

  • @Anonymous-Indian..2003
    @Anonymous-Indian..2003 ปีที่แล้ว

    It can easily be done by using Laplace transform.....

  • @fasihullisan3066
    @fasihullisan3066 ปีที่แล้ว

    I failed to solve by L Hospital rule that limit t approaches to zero tlnt^2/(t^2+4) is equal to zero.

    • @tueur2squall973
      @tueur2squall973 ปีที่แล้ว +1

      It's just easy to see , you compare the growing rates of your functions! Any power of t will dictate its behavior over the behavior of an ln function.
      So the product t*ln(t²/t²+4) , inside the ln , when t approches 0 , the whole thing converges to 0 , then we have ln(0) , so it goes to -infinity but the whole thing is multiplied by a power of t that actually wins there cuz "it goes to 0 way faster than the ln function". And you should be able to verify this tesult using l'Hospital rule

    • @calcul8er205
      @calcul8er205 ปีที่แล้ว +1

      You can split it up as 2tln(t)-tln(t^2+4). Using the fact that the limit as t approaches 0^+, tlnt approaches 0 gets you to the answer. That fact can be proven using L'Hopital's Rule

  • @honestadministrator
    @honestadministrator ปีที่แล้ว

    Writing z for ln(x) one gets
    Integration (0, INF)
    ( sin^2(z)/( z exp(2z)) dz

  • @MrWael1970
    @MrWael1970 ปีที่แล้ว +2

    At the minute 18:07, the factor of 8 outside the integral should be divided by 4 not by 2.
    So, What about using Lobachevsky integral instead of Feynman technique from the beginning.
    Anyway, this is very interesting integral and you have a talent to solve such complex integrals.

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      The table of anti derivatives says that we need to divide by a=2 and not a²=4

    • @MrWael1970
      @MrWael1970 ปีที่แล้ว +1

      @@maths_505 the form of 1/(1+t^2) is the derivative of arctan. Thus, if we took 4 as a common factor from the denominator, then we divide 8 by 4. Thanks

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      @@MrWael1970 factor out 4 from the denominator and you get 1/(1+t²/4). Write t²/4 as (t/2)². Now you need (1/2)dt as the differential element so insert the ½ in the numerator and to balance that out we need to multiply outside the integral operator by 2. That gives you 2/4 outside the integral operator which is ½. Multiply that by the factor of 8 we already have then we get the factor of 4. You're right about factoring the 4 from the denominator but we also need to address the form of the differential element.

    • @MrWael1970
      @MrWael1970 ปีที่แล้ว +1

      @@maths_505 thanks, I got confused, but now it is clear. Regards.

    • @maths_505
      @maths_505  ปีที่แล้ว +2

      @@MrWael1970 it's cool....the signs of great mathematicians include forgetting constant factors cuz they're completely hypnotized by the beautiful structure 😂

  • @nura8578
    @nura8578 6 หลายเดือนก่อน

    ok, this is cool

  • @jorditoral8478
    @jorditoral8478 ปีที่แล้ว

    In which cases wouldn’t it be possible to switch the differential operator with the integral one?

    • @maths_505
      @maths_505  ปีที่แล้ว +1

      If there were problems with boundedness or convergence. Dirichlet's convergence theorem for integrals is a pretty good criteria to test whether or not the integral converges or not.

  • @adriansison1503
    @adriansison1503 ปีที่แล้ว

    Nice

  • @petterituovinem8412
    @petterituovinem8412 ปีที่แล้ว

    a great channel to satisfy my integration fetish

  • @padraehsani3908
    @padraehsani3908 ปีที่แล้ว

    Woooooow

  • @david-melekh-ysroel
    @david-melekh-ysroel ปีที่แล้ว +1

    You're going so fast, I can't well understand what you're doing ☹️☹️

  • @BruceWayne-mk9km
    @BruceWayne-mk9km ปีที่แล้ว +2

    Plz tell me, whether Feynman's technique is essentially solving an integration using Leibniz's rule?