Stanford University Entrance Interview Tricks | Find x=?

แชร์
ฝัง
  • เผยแพร่เมื่อ 8 พ.ย. 2024

ความคิดเห็น • 14

  • @yuusufliibaan1380
    @yuusufliibaan1380 หลายเดือนก่อน +2

    ❤❤❤ thanks 👍🙏💯😊

    • @superacademy247
      @superacademy247  หลายเดือนก่อน +1

      💪💪💪😍🥰🤩💡💕🔥

  • @musicsubicandcebu1774
    @musicsubicandcebu1774 หลายเดือนก่อน

    (A²)² - (B²)² = 16² - 4²

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 หลายเดือนก่อน

    (28+4/x^4) ➖ (20+4/x^4)={32/x^4 ➖ 24/x^4 }=8/{x^0+x^0 ➖ }=8/x^1=8 (x ➖ 8x+8).

  • @himo3485
    @himo3485 หลายเดือนก่อน

    7+1/x=A 5+1/x=B
    A⁴ - B⁴ = 240 (A2 + B2)(A + B)(A - B) = 240 = 20 * 6 * 2
    A + B = 6 A - B = 2 2A = 8 A = 4 B = 2
    7+1/x=4 5+1/x=2 1/x = -3 x = -1/3

  • @peterotto712
    @peterotto712 หลายเดือนก่อน

    Geht es noch umständlicher?

  • @prollysine
    @prollysine หลายเดือนก่อน

    let u=5+1/x , (2+u)^4-u^4=240 , we get , (u-2)(u^2+5u+12)=0 , u=2 , 5+1/x = 2 , 1/x = -3 , x= -1/3 ,
    u^2+5u+12=0 , u=(-5+/-V(25-48))/2 , u=(-5+/-i*V(23))/2 , x= 2/(-15+i*V23) , 2/(-15-i*V23) ,
    test , (7-3)^4-(5-3)^4=256-16 , --> 240 , OK ,

  • @kd8opi
    @kd8opi หลายเดือนก่อน

    There aren’t specific math questions you need to answer to get into Stanford or any other American University. Admissions are based on high school grades, national aptitude tests like the SAT, letters of recommendation and essays. I don’t know why you keep posting these questions as entrance tests to get into Ivy League schools, especially when half of students enrolled aren’t in science or math related fields.

    • @ManjulaBrahmachari
      @ManjulaBrahmachari หลายเดือนก่อน

      Mans gotta get his bread somehow

    • @kd8opi
      @kd8opi หลายเดือนก่อน

      @@ManjulaBrahmachari he can get his bread by doing math problems. Doesn’t have to lie about him and say they’re part of some entry exam when they’re not.

  • @key_board_x
    @key_board_x หลายเดือนก่อน +1

    [7 + (1/x)]⁴ - [5 + (1/x)]⁴ = 240 → let: a = 6 + (1/x)
    → 7 + (1/x) = a + 1
    → 5 + (1/x) = a - 1
    (a + 1)⁴ - (a - 1)⁴ = 240
    [(a + 1)²]² - [(a - 1)²]² = 240 → recall: a² - b² = (a + b).(a - b)
    [(a + 1)² + (a - 1)²].[(a + 1)² - (a - 1)²] = 240
    [(a + 1)² + (a - 1)²].[(a + 1) + (a - 1)].[(a + 1) - (a - 1)] = 240
    [a² + 2a + 1 + a² - 2a + 1].[a + 1 + a - 1].[a + 1 - a + 1] = 240
    [2a² + 2].[2a].[2] = 240
    2.(a² + 1) * 2a * 2 = 240
    2.(a² + 1) * 2a = 120
    2.(a² + 1) * a = 60
    (a² + 1) * a = 30
    a³ + a = 30
    a³ + a = 27 + 3
    a³ - 27 + a - 3 = 0
    (a³ - 3³) + (a - 3) = 0 → recall: p³ - q³ = (p - q).(p² + qp + q²)
    (a - 3).(a² + 3a + 9) + (a - 3) = 0
    (a - 3).(a² + 3a + 9 + 1) = 0
    (a - 3).(a² + 3a + 10) = 0
    First case: (a - 3) = 0
    → a = 3
    Second case: (a² + 3a + 10) = 0
    a² + 3a + 10 = 0
    Δ = (3)² - (4 * 10) = 9 - 40 = - 31 = 31i²
    → a = (- 3 ± i√31)/2
    First solution: a = 3
    Recall: a = 6 + (1/x)
    1/x = a - 6
    1/x = 3 - 6
    1/x = - 3
    → x = - 1/3
    Second solution: a = (- 3 + i√31)/2
    Recall: a = 6 + (1/x)
    1/x = a - 6
    1/x = [(- 3 + i√31)/2] - 6
    1/x = (- 3 + i√31 - 12)/2
    1/x = (- 15 + i√31)/2
    x = 2/(- 15 + i√31)
    x = 2.(- 15 - i√31)/[(- 15 + i√31).(- 15 - i√31)]
    x = 2.(- 15 - i√31)/[225 - 31i²]
    x = 2.(- 15 - i√31)/256
    → x = (- 15 - i√31)/128
    Third solution: a = (- 3 - i√31)/2
    Recall: a = 6 + (1/x)
    1/x = a - 6
    1/x = [(- 3 - i√31)/2] - 6
    1/x = (- 3 - i√31 - 12)/2
    1/x = (- 15 - i√31)/2
    x = 2/(- 15 - i√31)
    x = 2.(- 15 + i√31)/[(- 15 - i√31).(- 15 + i√31)]
    x = 2.(- 15 + i√31)/[225 - 31i²]
    x = 2.(- 15 + i√31)/256
    → x = (- 15 + i√31)/128

    • @superacademy247
      @superacademy247  หลายเดือนก่อน

      Thanks for detailed and resourceful explanation 💪💪💪

    • @Rohmat-oo3pw
      @Rohmat-oo3pw หลายเดือนก่อน

      (7+1/x)⁴+(5+1/x)⁴ =240=4⁴-2⁴. 7+1/x=4. 1/x=4-7. 1/x=-3 x=-1/3. 5+1/x=2. 1/x=2-5 1/x=-3. X=-1/3. Ok