e is golden.

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ธ.ค. 2024

ความคิดเห็น • 40

  • @MyEpitt
    @MyEpitt ปีที่แล้ว +42

    I'm always amazed when somebody discovers something this obscure. Why would anybody ever think to look for this?

    • @MasterChakra7
      @MasterChakra7 ปีที่แล้ว +20

      It's the same old answer for Maths and Physics : cocaine

    • @donach9
      @donach9 ปีที่แล้ว

      ​@@MasterChakra7amphetamine, I reckon

    • @plislegalineu3005
      @plislegalineu3005 ปีที่แล้ว

      @@donach9 Walter Weiss, the competitor of Leonard Euler

  • @BikeArea
    @BikeArea ปีที่แล้ว +34

    How far fetched can an identity be?
    Michael: Yes.

  • @logician1234
    @logician1234 ปีที่แล้ว +35

    What a crossover

  • @looney1023
    @looney1023 ปีที่แล้ว +9

    I love e. My favorite is this stochastic definition:
    Let X_i ~ Uniform(0,1) for integers i.
    If N = min { n | X_1+X_2+...+X_n > 1 },
    then E[N] = e.
    In words, if you repeatedly draw uniform random numbers between 0 and 1 and keep a running total of the sum, then on average, it will take e draws for the sum to exceed 1.

  • @Rócherz
    @Rócherz ปีที่แล้ว +1

    Unrelated, but the video made me realize this:
    If
    Φ = (1+√5)/2> 1
    is the positive root of
    x² -x -1 = 0,
    then
    Φ² = Φ +1,
    so that
    1 = Φ² -Φ = Φ(Φ-1),
    but then,
    1 = 1/Φ(Φ-1) = 1/Φ² × 1/(1-1/Φ).
    Since Φ > 1, we have 0 < 1/Φ < 1, thus
    *1 = 1/Φ² +1/Φ³ +1/Φ⁴ +1/Φ⁵ +1/Φ⁶ +…*

  • @johntse5770
    @johntse5770 ปีที่แล้ว +3

    U reli LOVE using Dominated Convergence Theorem to switch the order of summation and integration in proving summation identities.
    u've already shot a video on when Feynman's trick doesn't work. When will u shoot a video when this Theorem doesn't work? 🤩🤩

  • @cycklist
    @cycklist ปีที่แล้ว +1

    I love the magical tapping on the board.

  • @sunritpal1037
    @sunritpal1037 ปีที่แล้ว +10

    What the hell is up with that amazing thumbnail 😳

  • @goodplacetostop2973
    @goodplacetostop2973 ปีที่แล้ว +12

    16:50

    • @debussy_69
      @debussy_69 ปีที่แล้ว +1

      Haven't checked out Michael in a while, glad you're still here

  • @wesleydeng71
    @wesleydeng71 ปีที่แล้ว +3

    Interesting. You could plug in other values than 1/ψ. For example, for x=1/2 one gets e^0.5 = replacing ψ with 2 in RHS.

    • @ingobojak5666
      @ingobojak5666 ปีที่แล้ว

      Thanks for that! Indeed, for any 0

  • @gm-123-0
    @gm-123-0 ปีที่แล้ว +7

    10:04 is this wizardry?

    • @ilyafoskin
      @ilyafoskin ปีที่แล้ว +4

      Michael is the math teacher at Hogwarts

    • @donach9
      @donach9 ปีที่แล้ว

      I love the magic knock

  • @minwithoutintroduction
    @minwithoutintroduction ปีที่แล้ว +1

    رائع جدا كالعادة.
    الطريق شاقة و الوصول ممتع

  • @DanielGomes-sw2fd
    @DanielGomes-sw2fd ปีที่แล้ว

    8:30 The terms are all positive so you can always exchange the two summations.

  • @CM63_France
    @CM63_France ปีที่แล้ว +1

    Hi,
    I suppose you mean : "our favorit identity involving e", but also some way : "defining" e . So mine is : lim_{n->infty} (1 + 1/n)^n .
    But if you mean only "involving", my prefered indentity is e^ix = cos x + i sin x .

  • @hcgreier6037
    @hcgreier6037 ปีที่แล้ว

    Woouh! That's hard to grasp, but very nice!🤣

  • @Anonymous-zp4hb
    @Anonymous-zp4hb ปีที่แล้ว

    Damn, that's beautiful.

  • @mikecaetano
    @mikecaetano ปีที่แล้ว

    Sweet! Decomposition of unity meets up with friends...

  • @d-nize
    @d-nize ปีที่แล้ว +1

    Why should numbertheoretical functions like these two (especially my(n)) combined with an geometric (classic sense, ratio of certain lengths) defined number be in any relation to a trancendental number?
    This is mathemaGics. :D
    Would be nice to see following scenario.
    Use this expression as a Definition for exp(1).
    Extend the definition to exp(x) for real x and assuming exp(ix) = cos(x)+isin(x) find similar expressions for sin(x) and cos(x).

  • @ceebongo
    @ceebongo ปีที่แล้ว

    What. In. The. Actual. Phi.

  • @2manypeople1
    @2manypeople1 ปีที่แล้ว +5

    There is a yt-video titled "Unveiling Connections between Mathematical Constants: The Conservative Matrix Field". That would be a nice topic in this context.

  • @aarong2374
    @aarong2374 ปีที่แล้ว

    Didn't realize R. Schneider is in the band "the Apples in Stereo!"

  • @wenkoibital4779
    @wenkoibital4779 ปีที่แล้ว +1

    e is everywhere /\ e is golden ---> means : gold is everywhere.😀

  • @abdoshaat3304
    @abdoshaat3304 ปีที่แล้ว +1

    This topic under what branch in mathematics

  • @synaestheziac
    @synaestheziac ปีที่แล้ว +1

    Almost e hundred thousand subs!

  • @gp-ht7ug
    @gp-ht7ug ปีที่แล้ว +1

    Very interesting identity! I am a simple man and my favorite identity is Euler’s identity e=cosθ+isinθ

    • @lucid_
      @lucid_ ปีที่แล้ว +1

      Thats e^(iθ) but yeah i see your point

  • @ruffifuffler8711
    @ruffifuffler8711 ปีที่แล้ว

    ? Something about pincers and prongs ?

  • @Alan-zf2tt
    @Alan-zf2tt ปีที่แล้ว

    Amazing - it has a poetic beauty all of its own. And I suppose it emphasizes: all of math is really a human construct or does it? 🙂

  • @ahmedgg8867
    @ahmedgg8867 ปีที่แล้ว +3

    Nice

  • @charleyhoward4594
    @charleyhoward4594 ปีที่แล้ว +2

    too abstract ....

    • @mariochavez3834
      @mariochavez3834 ปีที่แล้ว +1

      Indeed m8
      But you can't deny the coolness of this identity

  • @michaelgolub2019
    @michaelgolub2019 ปีที่แล้ว

    It seems that there was a mistyping in #\delta$ definition: $\mu
    e0$ is to be replaced by $\mu
    e1$.