Approximating (1.998)^4 by using differential

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ม.ค. 2025

ความคิดเห็น • 635

  • @Phi1618033
    @Phi1618033 3 ปีที่แล้ว +353

    Mathematician: "Let's use calculus to solve this."
    Engineer: "It's 16."

  • @aryansant
    @aryansant 5 ปีที่แล้ว +452

    I think he uses Integral Calculus in grocery shopping.

    • @jamanm.2837
      @jamanm.2837 5 ปีที่แล้ว +14

      He saves a cent okay, that’s a lot for us asains

    • @jamanm.2837
      @jamanm.2837 5 ปีที่แล้ว +10

      Asians*

  • @merubindono
    @merubindono 6 ปีที่แล้ว +1356

    Engineer: it's about 16. Add 25% contingency factor. Let's make it 20.

    • @jmaymay1997
      @jmaymay1997 6 ปีที่แล้ว +138

      As long as there's a safety factor you can't be wrong

    • @dougr.2398
      @dougr.2398 6 ปีที่แล้ว +39

      No, it is LESS than 16!!!

    • @emperorpingusmathchannel5365
      @emperorpingusmathchannel5365 6 ปีที่แล้ว +42

      Engineers make me cringe

    • @dougr.2398
      @dougr.2398 6 ปีที่แล้ว +12

      GLaDOS some engineering students become physicists, and viceversa

    • @AstroTibs
      @AstroTibs 6 ปีที่แล้ว +39

      Doug didn't understand the joke.

  • @michel_dutch
    @michel_dutch 6 ปีที่แล้ว +209

    Next: solve a calculus problem using only arithmetic. 😁

    • @saketsharma827
      @saketsharma827 5 ปีที่แล้ว +23

      Michel ten Voorde Actually its been done. Sir Isaac Newton used basic arithmetics applied to calculus to find out the motion of heavenly bodies

    • @adityasohani7964
      @adityasohani7964 5 ปีที่แล้ว +6

      Trapezium rule for area

  • @gubby740
    @gubby740 6 ปีที่แล้ว +410

    Approximately 16, you’re welcome
    .
    .
    .
    .
    .
    Don’t take it seriously lol

  • @PackSciences
    @PackSciences 6 ปีที่แล้ว +638

    Binomial expansion of (x+y)^4 with x = 2 and y = -0.002 and picking the zero-th and first order:
    (x+y)^4 -> x^4 + 4x^3 y = 16 - 4*2*2*2*0.002 = 16 - 0.032 = 15,936
    Which is exactly the same result as yours.
    In fact, that's exactly the same thing because you consider the derivative of (x+y)^4 with respect to y to be a constant, so you pick up to the first order.
    One could argue that you can use Taylor expansion of (2+x)^4 in x=0.
    You get (2+x)^4 = 16 + 32 x
    Plugin in x=-0.002 and you get 15,936
    Oh, what a surprise, we also find the same result. How odd!
    In fact, all these methods are equivalent.

    • @sergioh5515
      @sergioh5515 6 ปีที่แล้ว +41

      This is because this is a first degree Taylor polynomial in disguise...

    • @PackSciences
      @PackSciences 6 ปีที่แล้ว +9

      Yes, that's what I said.

    • @sergioh5515
      @sergioh5515 6 ปีที่แล้ว +27

      PackSciences yep...agreed... as a side note I'm pretty sure this vid is for calc 1 students

    • @TomJakobW
      @TomJakobW 6 ปีที่แล้ว +10

      Little typo there in the first paragraph; it's (of course) 16 - 0.064; you basically just multiplied by 0.001 instead of 0.002

    • @mrmeowtv6248
      @mrmeowtv6248 6 ปีที่แล้ว +7

      I can see this working with small exponents, but at larger exponents it's a bit harder to calculate the binomial coefficients or remember the Pascal Triangle at higher degrees. In terms of mental math, I'd prefer using calculus. Unless there is a trick that I might not know. If so please tell. :D

  • @josephjackson1956
    @josephjackson1956 5 ปีที่แล้ว +30

    You know someone is smart when they use Wolfram Alpha as a calculator

  • @tanelgulerman3073
    @tanelgulerman3073 6 ปีที่แล้ว +10

    First thing came into my mind was using Binomial Theorem;
    (2-dx)^4= 2^4 - 4. 2^3 .(dx) ........ so on.
    Rest of the terms include dx to the power greater than 1 so we can ignore them for any practical purposes since they will be negligibly small.
    So 16 -0,064 = 15,936
    Thank you for this problem, was interesting to see.
    #YAY

  • @Exachad
    @Exachad 5 ปีที่แล้ว +34

    This is a more conplicated demonstration of tangent line approximations.

  • @davidseed2939
    @davidseed2939 4 ปีที่แล้ว +1

    Quicker using binomial expansion.
    X = 16(1- d)^4 d=10^-3
    X=. 16(1-4d + 6d^2...)
    X= 16 -64d + 96d^2
    X= 16- 0.064 + { 100×10^-6 = 10^-4 }
    X = 15.9361

  • @harshvardhangupta2399
    @harshvardhangupta2399 6 ปีที่แล้ว +4

    sir you are so great, the best thing I like about you is you always teach us happily which makes us understand maths easily, keep going sir never let us down, thankyou. H

  • @ralfbodemann1542
    @ralfbodemann1542 6 ปีที่แล้ว +95

    The relative deviation of your approximation from the real value is 0.0006%. For practical purposes, this is usually neglectable.

    • @geekjokes8458
      @geekjokes8458 6 ปีที่แล้ว +5

      Ralf Bodemann its even nicer that the relative difference between 2 and the actual input is *bigger* than the result!

    • @wontpower
      @wontpower 6 ปีที่แล้ว +6

      *negligible

    • @devd_rx
      @devd_rx 5 ปีที่แล้ว

      Why is deviation between (0.99)^2 and (1.01)^2 too high

    • @petachad8463
      @petachad8463 2 ปีที่แล้ว

      @@wontpower bruh you do people always correct someone else's spelling mistakes. BRO ENGLISH IS NOT MOST PEOPLE'S FIRST LANGUAGE.

  • @tushar.mp4
    @tushar.mp4 6 ปีที่แล้ว +65

    Is it only me who heard *Doraemon* tune in the intro? Btw thanks for this amazing video

    • @blackpenredpen
      @blackpenredpen  6 ปีที่แล้ว +10

      Tushar Patel
      Thank you! And you were right about the intro tune

    • @nootums
      @nootums 6 ปีที่แล้ว +6

      @@blackpenredpen my life was a lie,
      Now I cannot unhear it!!!

  • @kingbeauregard
    @kingbeauregard 6 ปีที่แล้ว +4

    A lot of people are making too much of how this particular case lends itself to a variety of approaches. But the derivative approach can be used for just about any situation where the function is differentiable. For example, back in physics class, we used to calculate very small time dilation effects (which involved square roots of differences of squares) by differentiating the time dilation function and using that to calculate the delta.
    Also, this ties into the Taylor Series, which can be used to approximate complicated functions with polynomials:
    en.wikipedia.org/wiki/Taylor_series

  • @deutschlandmeinvaterland1568
    @deutschlandmeinvaterland1568 6 ปีที่แล้ว +1

    Excellent video. Also, it's really awesome to read all these comments offering other solutions as well! Math is so fun!

  • @gianlucamolinari3490
    @gianlucamolinari3490 5 ปีที่แล้ว +8

    This is really interesting how calculus can be used to solve such problems!

  • @elchingon12346
    @elchingon12346 6 ปีที่แล้ว

    This is an excellent explanation for local linear approximation for anyone who has basic knowledge of derivatives

  • @calyodelphi124
    @calyodelphi124 6 ปีที่แล้ว +159

    I took a more direct approach using a bit of precalculus and knowing the binomial expansions of (a+b)^n:
    (1.998)^4 = (2-0.002)^4
    a = 2
    b = -0.002 = -2E-3 (scientific notation makes this process a bit easier)
    (a+b)^4 = 1a^4b^0 + 4a^3b^1 + 6a^2b^2 + 4a^1b^3 + 1a^0b^4
    Powers of a from 0 to 4: 1, 2, 4, 8, 16
    Powers of b from 0 to 4: 1, -2E-3, 4E-6, -8E-9, 16E-12
    From there, plug in for a and b:
    1x16x1 + 4x8x-2E-3 + 6x4x4E-6 + 4x2x-8E-9 + 1x1x16E-12
    16 + 32x-2E-3 + 24x4E-6 + 8x-8E-9 + 16E-12
    16 + -64E-3 + 96E-6 + -64E-9 + 16E-12
    From there I just expanded the scientific notation into full decimal representations and added the positives together, then the negatives, and then I subtracted:
    16.000 000 000 000
    00.000 096 000 000
    00.000 000 000 016 +
    ---------------------------------------
    16.000 096 000 016
    0.064 000 000 000
    0.000 000 064 000 +
    -----------------------------------
    0.064 000 064 000
    16.000 096 000 016
    00.064 000 064 000 -
    ------------------------------------
    15.936 095 936 016
    Exact value without having to manually multiply 1.998 by itself four times over and having to waste time with long-form multiplication. c:
    Although your method is a lot more eloquent, a whole lot faster, and if you're just doing quick back of the envelope math for a crude engineering calculation just to get a quick idea of what's going on or because your tooling just isn't that precise anyways... it's perfectly A-O-K to use.

    • @dekrain
      @dekrain 6 ปีที่แล้ว +1

      @Calyo Delphi: I did only one addition using nine's-complement.

    • @abc_cba
      @abc_cba 6 ปีที่แล้ว +1

      Calyo Delphi Can you do a video of this ? I'm sure it would be more explanatory.

    • @forloop7713
      @forloop7713 6 ปีที่แล้ว +3

      Engineer would simply say 16lol

    • @HandledToaster2
      @HandledToaster2 6 ปีที่แล้ว

      no u

    • @forloop7713
      @forloop7713 6 ปีที่แล้ว

      @@HandledToaster2 succ

  • @antoniomonteiro1203
    @antoniomonteiro1203 5 ปีที่แล้ว

    It can even be made simpler: To square x-a you get approximately x^2-2ax once that a is very small and so a^2 will be smaller.
    In our case, we get 4-2 . 2 . 0.002 which is 4 - 0.008.
    Repeating (because we want the fourth power), we get 16 - 2 . 4 . 0.008 = 16 - 0.064.

  • @collegemathematics6698
    @collegemathematics6698 5 ปีที่แล้ว +1

    It easier to use the linear approximation using first two terms in taylor series
    L=f(a) +d/dx f(a) (x-a)..... 1
    where a is constant, and L stand for linear approximation of the original function
    f(2)=2^4=16......2
    d/dx f(2) =4(2)^3=32.......3
    Substitute 2 and 3 in 1
    L=16+32(x-2) ....4
    SUBSTITUTE x=1.998 in 4 implies
    L=15.936

  • @Deibler666
    @Deibler666 5 ปีที่แล้ว +2

    This is very interesting! This approximation method is very precise and you can always experiment with other values as well.

  • @TimeTraveler-hk5xo
    @TimeTraveler-hk5xo 4 ปีที่แล้ว +1

    I was thinking about this a little differently...
    In general, we have: (a + b)^n = C0*a^n + C1*a^(n-1)*b + ... + Cn*b^n, where C0, C1, ..., Cn are the binomial expansion coefficients.
    If 0 < |b|

  • @potassiumpermangante
    @potassiumpermangante 6 ปีที่แล้ว +3

    Awesome Video, Really Informative and Useful.Thank you so much.

  • @moskthinks9801
    @moskthinks9801 6 ปีที่แล้ว +96

    Binomial Theorem can also solve it.
    (2-0.002)^4=16-4(8)(0.002)+6(4)(0.000004)-4(2)(0.000000008)+(0.000000000016)
    =16-0.064+0.000096-0.000000064+0.000000000016
    =15.936095936016

    • @moskthinks9801
      @moskthinks9801 6 ปีที่แล้ว +15

      GG to everyone who used this!

    • @tipoima
      @tipoima 6 ปีที่แล้ว

      Yea, but it's more of a general method to use the derivative.

    • @moskthinks9801
      @moskthinks9801 6 ปีที่แล้ว

      tipoima I know I know, but this is a special approach for the power functions, and yes, the derivatives are a bit easier for approximation

    • @jadebriones1633
      @jadebriones1633 6 ปีที่แล้ว +4

      M. Shebl just multiplying 1.998 by itself four times is probably as fast as this method though...

    • @WindsorMason
      @WindsorMason 5 ปีที่แล้ว +1

      @@jadebriones1633 the only multiplication involved (aside from one factor of 3) are powers of 2 and 10, and the addition/subtraction all line up nicely so it's quite quick

  • @sammariofan
    @sammariofan 6 ปีที่แล้ว +1

    Cal 2 pays off! No kidding. Great video, it's great to see application of calculus, love how alive you look and how the brain is being used!

  • @edtix
    @edtix 6 ปีที่แล้ว +1

    Here in Poland we can't have calculators on exams at university so I've learned this on the beginning. And this is simple example. I remember people who was so angry with professor :) very useful approach not only for power. Try to calculate 4th root of 1558.57 without this method.

  • @Roarshark12
    @Roarshark12 6 ปีที่แล้ว

    Really enjoyed this one. Thanks for refreshing my knowledge of differentials!

  • @singcheung2362
    @singcheung2362 5 ปีที่แล้ว +15

    (2-0.002)^4=(2-0.002)^2^2
    ~(4-0.008)^2 (note: 0.002^2 is too small, we regard it as 0)
    ~(16-0.064) (note: 0.008^2 is too small, we regard it as 0)
    =15.936

  • @JustinsRealmMC
    @JustinsRealmMC 6 ปีที่แล้ว

    Clever tool that I can use in computing harder examples. Those in the comments section missed out the point. He knows he can use algebra in breaking apart the given but what he wants to teach you is to approximate a function using differentiation.

  • @davidjames1684
    @davidjames1684 5 ปีที่แล้ว +12

    I converted 1.998 to 999/500 then squared it in my head to 998,001 / 250,000 which is about 3.992. Notice how the delta of 0.002 was made into a new delta of 0.008 so there is a cube factor in there (2*2*2 = 8). So by squaring the intermediate result again, the new delta should be 0.064 (8*2*2*2).

  • @andrewsmitley
    @andrewsmitley 6 ปีที่แล้ว +7

    I figured out what you were doing halfway in and just kind of reveled in the genius

    • @DanDart
      @DanDart 6 ปีที่แล้ว

      this happens every video

  • @bigrobbyd.6805
    @bigrobbyd.6805 6 ปีที่แล้ว

    Excellent refresher, sir. Thank you!

  • @Piyushks02
    @Piyushks02 6 ปีที่แล้ว +2

    I just wonder why didn't my teacher tell this very basic question when we were being taught calculus (it's been more than even a month since we started doing differentiation). Thanks to u I am able to understand this concept more!

  • @pankajsoni4257
    @pankajsoni4257 5 ปีที่แล้ว +1

    brilliant video

  • @nranify
    @nranify 6 ปีที่แล้ว

    Your videos are addictive. I enjoy these ingenious connections and tricks you come up with. Keep it up:) Much love from Kent State Uni

  • @anshumanagrawal346
    @anshumanagrawal346 4 ปีที่แล้ว +7

    If you wanna use approximation by calculus, it's better to use the form (1+x)^n ~ 1+ nx, where x

  • @musawaleed224
    @musawaleed224 4 ปีที่แล้ว

    Thank you for excellent explanation

  • @orlandotorres2648
    @orlandotorres2648 5 ปีที่แล้ว

    I loved it, beautiful

  • @AmitKumar-qn1wy
    @AmitKumar-qn1wy 6 ปีที่แล้ว +3

    I like it. It's a very good way to use calculus

  • @davidseed2939
    @davidseed2939 5 ปีที่แล้ว

    perhaps a shorter rouute is to transforn dy=4x^3 dx into
    dy/y = 4 dx/x
    dy= y( 4 * -0.001)
    dy =16(-0.004)
    Y = 16- 0.064 =15.936

  • @mathteacher2651
    @mathteacher2651 5 ปีที่แล้ว

    Another excellent explanation....

  • @INDIAN-kq6yo
    @INDIAN-kq6yo 5 ปีที่แล้ว

    Awesome. Now I understand the usage on differential calculus.

  • @jeramiet154
    @jeramiet154 5 ปีที่แล้ว +1

    This is how I've always done mathematics since I began learning numbers. Never showing my work other than a couple of numbers I needed to remember along the way was always a problem in school.

  • @ahmedzuhairy7683
    @ahmedzuhairy7683 3 ปีที่แล้ว

    That what we call him The mean value theorem , thanks for teach us .❤️

  • @aapkafreeschool6051
    @aapkafreeschool6051 6 ปีที่แล้ว

    Loved the video!

  • @iSkeleBoss
    @iSkeleBoss 6 ปีที่แล้ว

    Much better explanation than my prof gave me. Thanks!

  • @merveilmeok2416
    @merveilmeok2416 5 ปีที่แล้ว

    Good teaching. Thank you, Sir.

  • @dr.lightbulbsunprog3263
    @dr.lightbulbsunprog3263 6 ปีที่แล้ว

    Really nice one man !! Love from India

  • @Kuratius
    @Kuratius 6 ปีที่แล้ว +1

    My first thought was Taylor series, which would essentially give you the same result (first order approximation) . When you wrote down 2-0.002 I thought you might use the Binomial theorem.
    But your way of explaining it is nice for students that don't know about Taylor series yet.

  • @MatheusNasi
    @MatheusNasi 6 ปีที่แล้ว

    y= 1.998^4 = (2 - 2/1000)^4
    Factor out the 2:
    y= 2^4(1 - 1/1000)^4
    Let x= 1/1000
    Using the aproximation: (1±x)^n = 1 ± nx, for |x|

  • @duggydo
    @duggydo 6 ปีที่แล้ว +9

    Based upon your previous video, I thought you might do a video like this one! :)

  • @michaeld9682
    @michaeld9682 6 ปีที่แล้ว

    Love it. Thank you

  • @princesetne6330
    @princesetne6330 6 ปีที่แล้ว

    Very applaudable, sir :) thanks!

  • @trueriver1950
    @trueriver1950 6 ปีที่แล้ว

    I noticed that delta x / x is 1 per mille (1 part per thousand)
    I know that the proportion is multiplied by the power, so looking for delta y approx 4 per mille.
    4 x 16 is 64 so have to subtract 64/1000 from 16.
    15.936. Same as your answer but using an extra short cut

  • @steffahn
    @steffahn 6 ปีที่แล้ว +9

    0:14 - took me 5 minutes.
    Starting with 1998 = 2*(1000-1)
    1998^4 = 2^4 * (1000 - 1)^4 [a:= 1000, b :=1]
    = 16* (a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4
    = 16 * (1,000,000,000,000 - 4,000,000,000 + 6,000,000 - 4,000 + 1)
    = 16,000,000,000,000 - 64,000,000,000 + 96,000,000 - 64,000 + 16
    = 16,000,096,000,016 - 64,000 - 64,000,000,000
    = 16,000,096,000,016 - 1,000,000 + 936,000 - 1,000,000,000,000 + 936,000,000,000
    = 15,936,095,936,016
    EDIT: OH WAIT, lol, confused your notation for meaning 1998, since I’m not that used to using "." for decimal points (although, I know, I adopted this very comment to US notation [but remember, I did everything on paper first]).
    Anyways, then the result would be 15.936095936016.
    And actually calculation was a lot easier with the separators every 3 digits.

    • @PackSciences
      @PackSciences 6 ปีที่แล้ว +1

      That's correct, but the goal of the exercise was to get an approximation.
      Your result should have been truncated to the first order in the binomial expansion.

    • @steffahn
      @steffahn 6 ปีที่แล้ว +1

      I know. I was answering question right at the beginning, when he asked how long we’d need for a complete computation.

    • @PackSciences
      @PackSciences 6 ปีที่แล้ว

      Well there is no point to do the whole computation, you just wasted your time

    • @steffahn
      @steffahn 6 ปีที่แล้ว +1

      Well if you plan to comment this under every comment here, that presents or states they did a full computation, too, then go ahead and waste your time.

    • @PackSciences
      @PackSciences 6 ปีที่แล้ว

      shots fired!

  • @shashengwan6417
    @shashengwan6417 6 ปีที่แล้ว

    use formula y-f(a)=f'(a)(x-a); transform to y=f'(a)(x-a)+f(a)
    where the
    y is the final value;
    a=2
    x=1.998
    f(a)=a^4
    f'(a)=4a^3
    the y value will be the same as the video.

  • @manabendramaity4089
    @manabendramaity4089 5 ปีที่แล้ว

    love you so much sir...you are my inspiration... love you sir... Good bless.

  • @war_reimon8343
    @war_reimon8343 4 ปีที่แล้ว

    The same procedure as considering a central value(2) and the error(0.002). The bottom limit gives your solution.

  • @brunohidemisaijo2769
    @brunohidemisaijo2769 6 ปีที่แล้ว

    This is beautiful.

  • @Koisheep
    @Koisheep 6 ปีที่แล้ว

    What I would do is finding the tangent line r to the curve y=x⁴ at x=2. If
    r: y=ax+b (which I can determine using the power invested on me by HS calculus)
    Then I'd say f(1.998)=a(-0.002)+b. I never used the differential itself for approximations but I can always rely on good ol' HS calculus

    • @1972hattrick
      @1972hattrick 6 ปีที่แล้ว

      Konhat Lee Sakurai 4x^3 is the start of your tangent equation. Good intuition and I believe this is part of most HS Calculus curriculums

  • @leoitshere
    @leoitshere 6 ปีที่แล้ว

    This is equivalent to computing the linear approximation of x^4 around x=2, which is y = 32x - 48.

  • @ThePharphis
    @ThePharphis 6 ปีที่แล้ว

    I find differentials make more sense with a picture showing that you're basically just multiplying slope by deltaX to get the change in y due to the tangent (and also why the points must be close)

  • @darnellyiadom3596
    @darnellyiadom3596 6 ปีที่แล้ว +1

    That's so cool!

  • @connorhorman
    @connorhorman 5 ปีที่แล้ว

    L(x) = f(2) + f’(2)(x-2) near x=2. I learned that a few weeks ago in my calculus class.
    L(1.998) = 16 + 32(-0.002)
    L(1.998) = 16 - 0.064
    L(1.998) = 15.936

  • @kanewilliams1653
    @kanewilliams1653 5 ปีที่แล้ว

    Amazingly clever.

  • @mukeshchand5301
    @mukeshchand5301 5 ปีที่แล้ว +9

    I read this in my high school calculus class

  • @chabanefarid7660
    @chabanefarid7660 4 ปีที่แล้ว

    You can use the formilation of taylor and you well get an exact value becouse x^4 is defferentiable 4 times

  • @BariumBlue
    @BariumBlue 5 ปีที่แล้ว

    Tldr; we know 2^4=16, and if we model that as y=x^4 we can get the slope at x=2, multiply that slope by DeltaX where DeltaX = 1.998-2 to get a linear approximation of the difference in Y from x=2 to x=1.998, and that to 16, et voila

  • @nikhilvenkatesh1032
    @nikhilvenkatesh1032 6 ปีที่แล้ว +1

    We can use (1+x)^n is approximately 1+nx for small numbers. It gave me the answer under half a minute
    16(1-0.001)^4. = 16(1-4(0.001))
    = 16(0.996)
    =15.936

    • @samreengaziya8961
      @samreengaziya8961 6 ปีที่แล้ว

      Wah re chutiya(good luck for your maths exams you moron)

  • @hecz0r
    @hecz0r 6 ปีที่แล้ว +116

    easier approach:
    ((2-0.002)^2)^2
    done

    • @bludeat7398
      @bludeat7398 6 ปีที่แล้ว +27

      u can use ^4 power right from start and binomial formula ;)

    • @dexter9313
      @dexter9313 6 ปีที่แล้ว +14

      Done it (using powers of 10 notations to simplify 0.002 and powers computing). Took less than 5 minutes to get the exact value : 15.936095936016 . Calculus isn't needed, only square identity is ( (A+B)^2 = A^2+2AB+B^2 ).

    • @hecz0r
      @hecz0r 6 ปีที่แล้ว +2

      Blu Deat who the fuck actually knows that

    • @whebon7266
      @whebon7266 6 ปีที่แล้ว +10

      Blu Deat
      (a+b)^4=
      a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
      a=2
      b=-0.002
      16-0.064+0.000096-0.000000064-0.000000000016 =
      15.936095936

    • @whebon7266
      @whebon7266 6 ปีที่แล้ว

      *15.936095936016

  • @kensonmalupande2424
    @kensonmalupande2424 2 ปีที่แล้ว

    Well explained 💪💪💪

  • @blockthrower3947
    @blockthrower3947 4 ปีที่แล้ว

    I think using the binomial theorem and just doing the first two orders of it would give you the exact same answer you had, but with it you can got even more exact, if you want to do it for some reason

  • @TheBaggyT
    @TheBaggyT 5 ปีที่แล้ว

    Took 4 mins 43 sec..... just by doing (1.998^2)^2.
    Took under 2 mins by expanding (a - b)^4 and substituting a=2 and b=0.002.
    Both answers were exact.

  • @ethancheung1676
    @ethancheung1676 6 ปีที่แล้ว +4

    Interesting application

  • @easymathematik
    @easymathematik 6 ปีที่แล้ว

    There is a nice relation to statistics.
    This way showed in the video is used in "propagation of uncertainty" in physics and statistics.
    It's called "variance".

  • @martinepstein9826
    @martinepstein9826 6 ปีที่แล้ว

    Another slightly different approach: We know the fourth order Taylor expansion will be a polynomial in x-2 that's equal to x^4, so to find that expansion we can do
    x^4 = (2 + (x-2))^4 = 2^4 + 4*2^3*(x-2) + 6*2^2*(x-2)^2 + 4*2*(x-2)^3 + (x-2)^4
    = 16 + 32*(x-2) + 24*(x-2)^2 + 8*(x-2)^3 + (x-2)^4
    And truncate to your desired accuracy

  • @sbkscuify
    @sbkscuify 5 ปีที่แล้ว

    It’s beautiful how the universe works.

  • @AdityaKumar-ij5ok
    @AdityaKumar-ij5ok 6 ปีที่แล้ว +2

    You get pretty much excited when doing math, and that's great!

  • @vishalbanerjee6389
    @vishalbanerjee6389 6 ปีที่แล้ว

    Hey sir Vishal from India thank you for this lesson it help me lot in my mathematic now I can easily solve question like these

  • @swizzbeats1212
    @swizzbeats1212 5 ปีที่แล้ว

    Beautiful

  • @knutritter461
    @knutritter461 4 ปีที่แล้ว

    In my studies of chemistry we had to attend lectures in statistical thermodynamics as well. So we had to calculate a lot with the amount of permutations etc. Weirdest part for us was calculating with numbers no computer on this planet can calculate.
    Like: What is the result of N! with N=10EXP(23) We had to estimate as well using analytical maths.

  • @TrackopGaming
    @TrackopGaming 6 ปีที่แล้ว

    Great and useful video.

  • @kate00san
    @kate00san 5 ปีที่แล้ว +1

    Meaning of YAY: y=a^y Solve for y

  • @fCauneau
    @fCauneau 6 ปีที่แล้ว

    Taking 2 in factor, we have (1-1/1000)^4, approximately 1 - 4*1/1000, which gives immediately the correction to 16 : -64/1000. Your interesting demo gives the shortcut to the Taylor dev. on first order...

  • @bahrss
    @bahrss 5 ปีที่แล้ว +9

    Guys, does anybody remember about Taylor rows?
    (1+x)^a≈1+a*x
    so,
    (2-0.002)^4=2^4*(1-0.001)^4≈
    ≈16(1-0.004)=16-0.064=15.936
    it takes me 20 sec to calculate

    • @samyakjain9295
      @samyakjain9295 5 ปีที่แล้ว

      Bro how can you equate (1-0.001)⁴ to (1-0.004) this is not possible simply🤔

    • @bahrss
      @bahrss 5 ปีที่แล้ว +2

      @@samyakjain9295 that is the two first terms of Tailor's row of function (1+x)^a in zero

    • @cocolasticot9027
      @cocolasticot9027 5 ปีที่แล้ว

      That was my answer thanks ! :)

    • @danielplacido8746
      @danielplacido8746 5 ปีที่แล้ว

      That's the calculation he made, actually.

  • @Nudnik1
    @Nudnik1 6 ปีที่แล้ว +1

    thank you awesome

  • @adimaqsood3040
    @adimaqsood3040 5 ปีที่แล้ว

    We can write it as (2.000-0.002)⁴ or (2.000-0.002)²×(2.000-0.002)²

  • @davidjames1684
    @davidjames1684 6 ปีที่แล้ว

    My "simple" solution. (1.998)^4 is the same as (2 * 0.999)^4 which is the same as 16 * (.999^4). I remember that 0.999 * 0.999 = 0.998001 and I can see by visual inspection that 0.998001 ^ 2 is about 0.996 (following the pattern of the 3rd digit after the decimal). So the answer is 16 * 0.996 which is 15.936.

  • @suryapratimpaul
    @suryapratimpaul 6 ปีที่แล้ว

    Thank you so much

  • @subramaniamchandrasekar1397
    @subramaniamchandrasekar1397 5 ปีที่แล้ว +1

    I learnt it today. Great. I learnt why I forgot calculus. Must be for good.

  • @randomguy8461
    @randomguy8461 5 ปีที่แล้ว

    (2000-2)^4 use Pascal's triangle to easily do this, and then whatever you get move the decimal 12 places to the left

  • @suryaajha5953
    @suryaajha5953 6 ปีที่แล้ว

    I used Local Linearity principle and found the equation of tangent line at 2 using derivatives and then calculated function value of tangent line at 1.998 to have a better approximation of this problem

  • @djrednitro4116
    @djrednitro4116 5 ปีที่แล้ว

    That reminds of high school, such a good nostalgia

  • @yurenchu
    @yurenchu 4 ปีที่แล้ว

    At 4:03 , it's _wrong_ to suggest that Δy is (approximately) equal to the derivative dy . (Note that if instead of (1.998)⁴ we had to calculate (1.997)⁴ , then we could use the _same_ relation y = x⁴ and the _same_ "starting point" 2⁴ , so by definition the _actual derivative_ should also remain the same.) I think it's more proper to say
    Δy ≈ (dy/dx) * Δx
    where dy/dx (and not dy) is actually the derivative.
    Since y = x⁴, we have dy/dx = 4x³ , so we get
    Δy ≈ 4x³ * Δx
    (This way, we're also not dealing clumsily with the distinction between dx and Δx .)
    With x = 2 and Δx = -0.002 , this results in
    Δy ≈ 4*2³ * (-0.002) = -0.064
    hence y = 16 + Δy ≈ 16 - 0.064 = 15.936
    - - - - -
    By the way, the video's approach is all just an application of the linearization of a (smooth) function f(x) near a point x=c ,
    f(c+Δx) ≈ f(c) + f'(c)*Δx
    where f'(c) is defined as the value of (df/dx) at x=c.
    (In this particular example, we have f(x) = x⁴ and c=2 , and so f(1.998) ≈ f(2) + f'(2)*(-0.002) .)

  • @richardfarrer5616
    @richardfarrer5616 6 ปีที่แล้ว

    Binomial theorem. 1.998 = 2 * (1 - 10^-3) so 1.998^4 = 16 * (1-10^-3)^4 = 16*(1 - 4*10^-3 + 6*10^-6 - 4*10^-9+10^-12) = 16 - 0.064 + 0.000096 - 0.000000064 + 0.0000000000016 = 15.936095936016.
    Done in approximately 1 minute longer than the video, which I'll now have to go back and watch, from the point you set the challenge. I just hope I've got the number of decimal places right as everything was done using mental arithmetic and written here.

  • @perveilov
    @perveilov 6 ปีที่แล้ว

    Yo, I've learn this thing b4 but don't know a thing, thanks for clearing this up after 1 year :)

  • @mayankraghuvanshi7883
    @mayankraghuvanshi7883 6 ปีที่แล้ว +1

    It's amazing!!!!... And have a request can you make a video on different graphs.

  • @blackchicken2243
    @blackchicken2243 2 ปีที่แล้ว

    Very cool thanks

  • @brandonklein1
    @brandonklein1 6 ปีที่แล้ว

    It's rather elegant to take this as an accumulation, where f(b)=f(a)+int from a to b of f'(x)dx, dx~∆x.

  • @dougr.2398
    @dougr.2398 6 ปีที่แล้ว

    Why not just use Pascal’s triangle at 1 4 6 4 1 and skip all the function blabber? You’ll get an EXACT answer from the expansion of a^4 + 4 a^3•b + 6•(a^2)(b^2) + 4 a• b^3 + b^4 . What’s an error estimate for the procedure used?