Using Feynman's technique TWICE! (the integral of sin^3(x)/x^3 from 0 to inf)

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ก.พ. 2025
  • We will evaluate the improper integral of sin^3(x)/x^3 from 0 to infinity by using Feynman's technique of integration (aka differentiation under the integral sign, Feynman's integration trick, or Leibniz's Rule). This is definitely one of the coolest integration techniques (but unfortunately it is not often taught in a calculus class).
    See the integral of sin(x)/x from 0 to infinity: • integral of sin(x)/x f...
    integral of sin^2(x)/x^2 from 0 to infinity: • 100 integrals part 2 (...
    🛍 Shop math t-shirts & hoodies: bit.ly/bprpmerch
    10% off with the code "WELCOME10"
    ----------------------------------------
    **Thanks to ALL my lovely patrons for supporting my channel and believing in what I do**
    AP-IP Ben Delo Marcelo Silva Ehud Ezra 3blue1brown Joseph DeStefano
    Mark Mann Philippe Zivan Sussholz AlkanKondo89 Adam Quentin Colley
    Gary Tugan Stephen Stofka Alex Dodge Gary Huntress Alison Hansel
    Delton Ding Klemens Christopher Ursich buda Vincent Poirier Toma Kolev
    Tibees Bob Maxell A.B.C Cristian Navarro Jan Bormans Galios Theorist
    Robert Sundling Stuart Wurtman Nick S William O'Corrigan Ron Jensen
    Patapom Daniel Kahn Lea Denise James Steven Ridgway Jason Bucata
    Mirko Schultz xeioex Jean-Manuel Izaret Jason Clement robert huff
    Julian Moik Hiu Fung Lam Ronald Bryant Jan Řehák Robert Toltowicz
    Angel Marchev, Jr. Antonio Luiz Brandao SquadriWilliam Laderer Natasha Caron Yevonnael Andrew Angel Marchev Sam Padilla ScienceBro Ryan Bingham
    Papa Fassi Hoang Nguyen Arun Iyengar Michael Miller Sandun Panthangi
    Skorj Olafsen Riley Faison Rolf Waefler Andrew Jack Ingham P Dwag Jason Kevin Davis Franco Tejero Klasseh Khornate Richard Payne Witek Mozga Brandon Smith Jan Lukas Kiermeyer Ralph Sato Kischel Nair Carsten Milkau Keith Kevelson Christoph Hipp Witness Forest Roberts Abd-alijaleel Laraki Anthony Bruent-Bessette Samuel Gronwold Tyler Bennett christopher careta Troy R Katy Lap C Niltiac, Stealer of Souls Jon Daivd R meh Tom Noa Overloop Jude Khine R3factor. Jasmine Soni L wan na Marcelo Silva Samuel N
    ----------------------------------------
    💪 If you would also like to support this channel and have your name in the video description, then you could become my patron here / blackpenredpen

ความคิดเห็น • 219

  • @blackpenredpen
    @blackpenredpen  2 ปีที่แล้ว +74

    This is from the 100 integrals part 2. See the full video here th-cam.com/video/jQz1gQ24OHc/w-d-xo.html

    • @lorenzosaudito
      @lorenzosaudito 2 ปีที่แล้ว +3

      I was wondering why you looked so tired, now I understand 😂

    • @wonghonkongjames4495
      @wonghonkongjames4495 2 ปีที่แล้ว +1

      YES MU PRIME THINKS OUTSIDE THE BOX ALSO DO THE MERITAVIEN AND MIND YOUR DECISION TOO THEY ARE OUTSTANDINGLY DIFFERENT AND
      DR PEYAM TOO

    • @RaKeShCHauHAN28021
      @RaKeShCHauHAN28021 2 ปีที่แล้ว

      I Watch your video from India

  • @lordofhunger5175
    @lordofhunger5175 2 ปีที่แล้ว +622

    We need a tutorial about where to use each pen

  • @weinihao3632
    @weinihao3632 2 ปีที่แล้ว +144

    This kind of video, where you show your thought process and consider which route to go and even hit a dead end is very very nice as it teaches how to tackle the problem instead of simply presenting a deus ex machina solution.

  • @LuigiElettrico
    @LuigiElettrico 2 ปีที่แล้ว +58

    Looking at the clock and hearing it being synchronized with my own wall clock makes me feel like I am in the class :D Great integral!

  • @vatsalmalav440
    @vatsalmalav440 2 ปีที่แล้ว +7

    I like how you say "this guy" making numbers look like living things that make your life easier and many times Hard. This is a great integral you solved I loved it.

  • @yutaj5296
    @yutaj5296 2 ปีที่แล้ว +30

    Expressing sin³(𝑥) in terms of sin(3𝑥) and sin(𝑥) using the triple angle formula in the first place seems helps.

  • @h10r60v
    @h10r60v 9 หลายเดือนก่อน +4

    14:30 man i know that happiness and you have to experience it atleast once in a lifetime!

  • @drpeyam
    @drpeyam 2 ปีที่แล้ว +15

    Reminds me of the Borwein integrals a bit

  • @jamiewalker329
    @jamiewalker329 2 ปีที่แล้ว +30

    The integral - after using the fact that the integrand is even, using the triple angle formula can be written as 1/8 Im{ integral (e^i3x - 3e^ix)/x^3 dx } where the integral runs from -infinty to infinity. We can analytically continue into the complex plane, separate the two integrals, run a contour along an infinite semi-circle in upper half plane, and a small-semi circle in upper half plate, circulating the singlarities at z = 0 of the function. Using Jordan's lemma to determine that the integral around the large semi-circle is 0, and using Cauchy residue (no poles within contour) means that the integral is equivalent to integrating in the complex plane the above integral around an infinitely small semi-circle, centred at z = 0. The result is 1/8 Im(0.5*2*i*pi*residue at z = 0). The residue, of the above integrand at z = 0 is -3 (which can be quickly checked by expanding the exponential numerator to quadratic term. Plugging this in gives the answer...no Feynman...

    • @pashaw8380
      @pashaw8380 2 ปีที่แล้ว +2

      Indeed.

    • @chayanaggarwal3431
      @chayanaggarwal3431 2 ปีที่แล้ว

      Yes I did thought of the same way whenever the limits are till infinity with some power of x in denominator I always first try to use the residue theorem

    • @peamutbubber
      @peamutbubber ปีที่แล้ว +4

      Except u can do this without any of that, u overcomplicate the simple

    • @CliffSedge-nu5fv
      @CliffSedge-nu5fv 7 หลายเดือนก่อน

      Well, yes, _obviously_ any Calc 1 student already knows how to do that, so why not challenge yourself to trying a different method?

  • @sngash
    @sngash ปีที่แล้ว +9

    This is excellent and the video led me to Math 505's generalized version of sin^n(x)/x^n which looks like a great beast for you to work your magic on and possibly make understandable at around calc 2 level :). I struggled following the differentiation portion

  • @sikf
    @sikf 3 หลายเดือนก่อน

    Everytime I watch one of your videos, it feels like an emotional rollercoaster.

  • @ritvikg
    @ritvikg 2 ปีที่แล้ว +40

    10:16 I didn't get this step. Firstly how did he replaced the sin(3tx) with just sin(tx) and in the next step after substituting tx as u, he should get a 't' after integration which he missed as well. It should have been -3πt/8 + 9πt/8 considering his previous step of omitting 3 from the sin is right. Can anyone help me with this.

    • @ernestschoenmakers8181
      @ernestschoenmakers8181 2 ปีที่แล้ว +8

      I didn't get that either, he switched from sin(3tx) to sin(tx), must be a mistake over there and maybe despite of that the result is the same by coincidence.

    • @digbycrankshaft7572
      @digbycrankshaft7572 2 ปีที่แล้ว +4

      The first issue is definitely a mistake. With regard to the u=tx substitution this gives dx=du/t. When the substitution is performed it gives integral of sinu/(tx) du and as u=tx this gives integral of sinu/u du with the limits of integration being u=t×0=0 and u=t×infinity=infinity. This then is just the straightforward known integral with u instead of x with the same limits of integration giving pi/2.

    • @amirbasson532
      @amirbasson532 2 ปีที่แล้ว +16

      There was no mistake,
      The integral from the type: integral from zero to infinity of sin(Ax)/x dx always equal to π/2,
      because:
      (Integral from zero to infinity of
      sin(tx)/x dx)
      let tx = u
      x = u/t
      dx = du/t
      and then:
      the integral of sin(u)/(u/t) × du/t
      equal to:
      t×sin(u)/u × du/t
      t and t cancel out
      (the integral from zero to infinity of sin(u)/u du)= π/2
      and because of this:
      the integral from zero to infinity of sin(3tx)/x = the integral from zero to infinity of sin(tx)/x = π/2
      Hope I helped you :)

    • @digbycrankshaft7572
      @digbycrankshaft7572 2 ปีที่แล้ว +7

      @@amirbasson532 it was a mistake not making any reference to this fact as it was an assumption which has evidently caused confusion to several people.

    • @shoto206
      @shoto206 2 ปีที่แล้ว +3

      @@amirbasson532 ohhhh that explains it, thanks!

  • @mikefochtman7164
    @mikefochtman7164 10 หลายเดือนก่อน +3

    I lost something at 10:16. You got 9/4 int(0,inf) sin(tx)/x. But the previous step it was 3/4 sin(3tx)3x/x^2 ?? Shouldn't the argument to the sin function still be 3tx? How did that 3 disappear?

    • @kelvin31272
      @kelvin31272 5 หลายเดือนก่อน +2

      So here's what I think: the missing 3 was a copying mistake, which luckily turns out not to have any consequence on the answer, since the definite integral of the form sin(ax)/x evaluated between 0 and inf, is always equal to π/2, for all a > 0 (I think!)
      That means no matter if it is sin(3t) or sin(t) on the top, both integrals are still of the form sin(ax)/x (assuming t> 0 so that a>0, which was indeed stated earlier), and so both integrals are still π/2.
      If you want to prove that this is true, solve by subbing u=ax, and thus dx=du/a, into the integral of sin(ax)/x evaluated between 0 and inf, simplify, and you'll see it becomes the integral of sin(u)/u from 0 to inf, which is already known to be π/2.
      Thus the integral in that line where he makes the mistake, with or without the 3, is still equivalent to π/2, and there is no impact on the final answer.
      I hope this helped!

  • @zunaidparker
    @zunaidparker 2 ปีที่แล้ว +158

    If you Laplace transform this integral you'll see why the value for the 3rd power is different from the first two powers. Essentially you're doing a convolution, which amounts to taking a moving average over a sliding window of a rectangular function. For the first 2 powers, the window isn't wide enough to affect the value of the average over the moving window, but for the 3rd power, eventually we are averaging zero contributions from outside the rectangle which brings the moving average down.
    3blue1brown did an AWESOME video into this: m.th-cam.com/video/851U557j6HE/w-d-xo.html

  • @omograbi
    @omograbi 2 ปีที่แล้ว +34

    10:14 shouldn't it be sin(3tx)/x?
    Or it's anyway the same answer?

    • @ianfowler9340
      @ianfowler9340 2 ปีที่แล้ว +1

      I would say it's a different answer.

    • @MarkPaul1316
      @MarkPaul1316 2 ปีที่แล้ว +14

      @omograbi gives the same answer, but he could have continued with sin(3tx)/x, making the substitution a = 3tx, arriving at the integral of from 0 to infinity of (sina)/a which gives pi/2.

    • @yoyoezzijr
      @yoyoezzijr 2 ปีที่แล้ว +4

      its the same answer, integral of sin(tx) / x from 0 to ∞ is π/2, so putting 3t instead of t will be the same

    • @wolliwolfsen291
      @wolliwolfsen291 2 ปีที่แล้ว +6

      Yes, it‘s the same result, but it is confusing

    • @krisbrandenberger544
      @krisbrandenberger544 2 ปีที่แล้ว +2

      Both integrals will have the same exact value. Performing the substitution u=t*x for the first one will imply that 1/x=t/u and dx=(1/t)du, which makes the t's cancel out. Likewise, for the second one, if you let w=3*t*x, that will imply that 1/x=3*t/w and dx=(1/(3*t))dw, which makes the 3*t's cancel out.

  • @-fai7485
    @-fai7485 2 ปีที่แล้ว +19

    Hey sir, Feynman's technique is mad cool but... Where should I set the parameter? Is there any "rule" to follow?
    I mean, you are supposed to put the parameter on a place in which after deriving, the integral is easier to solve, but it would be marvelous if you have a structured guide that tells you where to put it depending on the situation. It would be great a video like... "When and where to use Feynman's technique"
    Thanks sir.

  • @CDChester
    @CDChester 2 ปีที่แล้ว +5

    Another integral for the collection!

  • @AntimatterBeam8954
    @AntimatterBeam8954 ปีที่แล้ว

    I just bought calculus clothing off your store. My weird maths science wardrobe is increasing. I am happier than I was 30 mins ago now.

  • @abdulmalek1118
    @abdulmalek1118 2 ปีที่แล้ว +1

    Hello ! I hope you see my comment
    I saw this nice question so that I recommend it
    The question is : solve the system of equations
    a = exp (a) . cos (b)
    b = exp (a) . sin (b)
    It can be nicely solved by using Lambert W function after letting z = a + ib
    Hope you the best ... your loyal fan from Syria

    • @kelvin31272
      @kelvin31272 5 หลายเดือนก่อน

      Email him!

  • @josdurkstraful
    @josdurkstraful 2 ปีที่แล้ว

    I understood absolutely nothing of all this but still watched the whole video...

  • @pacifyplayer
    @pacifyplayer 10 หลายเดือนก่อน +3

    After you simplified I''(t), where you split the integral into two integrals, how did you get rid of the 3tx inside of the sin function? In the next step, there is just a tx and no 3tx, how can you do this? Can someone explain, please?

    • @kelvin31272
      @kelvin31272 5 หลายเดือนก่อน

      So here's what I think: the missing 3 was a copying mistake, which luckily turns out not to have any consequence on the answer, since the definite integral of the form sin(ax)/x evaluated between 0 and inf, is always equal to π/2, for all a > 0 (I think!)
      That means no matter if it is sin(3t) or sin(t) on the top, both integrals are still of the form sin(ax)/x (assuming t> 0 so that a>0, which was indeed stated earlier), and so both integrals are still π/2.
      If you want to prove that this is true, solve by subbing u=ax, and thus dx=du/a, into the integral of sin(ax)/x evaluated between 0 and inf, simplify, and you'll see it becomes the integral of sin(u)/u from 0 to inf, which is already known to be π/2.
      Thus the integral in that line where he makes the mistake, with or without the 3, is still equivalent to π/2, and there is no impact on the final answer.
      I hope this helped!

  • @boomgmr6403
    @boomgmr6403 2 ปีที่แล้ว +13

    At 11:54 you dont write sin3tx again, is that a mistake?

    • @boomgmr6403
      @boomgmr6403 2 ปีที่แล้ว +1

      dont you then get integral sin3tx/x dx? Does that change something?

    • @Gamedolf
      @Gamedolf 2 ปีที่แล้ว +4

      At 10:50 he says you can have any constant multiple and it will always be pi/2

    • @djsmeguk
      @djsmeguk 2 ปีที่แล้ว

      Yes, but also no. The result is always pi/2 so it's not significant.

    • @boomgmr6403
      @boomgmr6403 2 ปีที่แล้ว

      @@Gamedolf I see

    • @MarkPaul1316
      @MarkPaul1316 2 ปีที่แล้ว +1

      @@boomgmr6403 he should have written it as sin3tx and shown that making the substitution u = 3tx would take the integral from 0 to infinity of (sinu)/u which gives pi/2.

  • @vogelvogeltje
    @vogelvogeltje 2 ปีที่แล้ว +3

    You have 60hz hum coming from your microphone JSYK. Try to turn your microphone up more without clipping over 0dbFS, or look and see if any wires are crossing over a power wire from your interface.

  • @mumilala9940
    @mumilala9940 2 ปีที่แล้ว +17

    The alternative way is Fourier transform, split it into (sinx/x)(sin²x/x²) then convolution time!

    • @md2perpe
      @md2perpe 2 ปีที่แล้ว

      I used that technique for the integral of sin²x/(x²(1+x²)), seen in th-cam.com/video/S52DapoH17M/w-d-xo.html

  • @DanielCohen-d4v
    @DanielCohen-d4v ปีที่แล้ว +3

    Because sin^3(x)/x^3 is an even func you can write the integral to be 1/2 of the same integral over the real line.
    Then after you take the d/dt and use the sin^2(x)=1-cos^2(x) you get an odd function over a simatric interval, so it's 0. So you don't need to take the second d/dt you did

  • @prollysine
    @prollysine 2 ปีที่แล้ว

    Hi bprp, thank you, the complicated calculation can be followed. Yes, Mr. Feynman could not only joke... I will study a lot...

  • @fordtimelord8673
    @fordtimelord8673 2 ปีที่แล้ว +5

    I know it’s not the same integral, but I recommend checking out the use of complex contour integration to come up with a general formula for the integral of sin (x^n)/x^n on the same interval.
    th-cam.com/video/ovj71qp7C4k/w-d-xo.html

  • @АлександрКузнецов-р6ю
    @АлександрКузнецов-р6ю ปีที่แล้ว

    bro u are insane pls make more viedos like this, i realy like it

  • @TheTorturer666
    @TheTorturer666 2 ปีที่แล้ว +1

    use infinity & beyond. works wonders

  • @premdeepkhatri1441
    @premdeepkhatri1441 7 หลายเดือนก่อน +1

    Thank You for this video.

  • @worldnotworld
    @worldnotworld 3 หลายเดือนก่อน

    Fantastic. Need to rehearse my trig identities!

  • @gooball2005
    @gooball2005 ปีที่แล้ว

    I like to think that he's just in somebody else's office at 12:30 in the morning doing integrals

  • @fantastic1046
    @fantastic1046 2 ปีที่แล้ว +1

    We can get the same result by a sampled function and sampled squared in frequency domain then taking area at freq = 0

  • @wcottee
    @wcottee 2 ปีที่แล้ว +18

    Maybe I missed it but at 10:16 how did the second term go from sin(3tx) to just sin(tx)?

    • @ActALCOCERBONILLAARTUROAZAEL
      @ActALCOCERBONILLAARTUROAZAEL 2 ปีที่แล้ว +3

      Same doubt

    • @noopcode
      @noopcode 2 ปีที่แล้ว +12

      it was a mistake but the integral is still pi/2

    • @cristofer6806
      @cristofer6806 2 ปีที่แล้ว +3

      yeah It should be 3tx but as he already mentioned, the result is π/2 regardless of the input.

    • @selectname9790
      @selectname9790 2 ปีที่แล้ว +1

      I don't think we need to do the u-substitution separately for the sin(3tx) to see that it is also π/2. We can reason directly from the sin(tx)/x integral. Since it's result is π/2 for any t value that means even 3t is a value that works. So t=1,2,'3',4,5,'6',7... work which includes the multiples of 3 ie. t=3,6,9...

    • @selectname9790
      @selectname9790 2 ปีที่แล้ว +1

      @@noopcode but yeah I think he just missed writing the 3

  • @scottleung9587
    @scottleung9587 2 ปีที่แล้ว +2

    Damn, that's hardcore - nice going!

  • @PunmasterSTP
    @PunmasterSTP ปีที่แล้ว +1

    That was some Feynmania!

  • @maalikserebryakov
    @maalikserebryakov ปีที่แล้ว

    you can use de moivre angular expansion to write trig^n as a sum of linear trig

  • @imsengky
    @imsengky 2 ปีที่แล้ว

    It is so good. I am really happy to see that solution. Thank

  • @ericknutson8310
    @ericknutson8310 3 หลายเดือนก่อน

    10:22 i believe you miss the 3tx in the argument of the right most sin integrand. however a similar substitution of w = 3tx for the right integrand at this step gives the exact same conclusions.

  • @Master_mind__235
    @Master_mind__235 2 ปีที่แล้ว

    To take out √-1 put e^iπ in the place of -1
    Please do it !

  • @danmart1879
    @danmart1879 2 ปีที่แล้ว

    I was lost for most of the video !! I have a long way to go.

  • @mcalkis5771
    @mcalkis5771 2 ปีที่แล้ว

    After the 100-x series I am surprised you want to even SEE another integral ever again.

  • @armanavagyan1876
    @armanavagyan1876 2 ปีที่แล้ว

    I adore your videos i watched the half of 100 integrals)

  • @rogerdudra178
    @rogerdudra178 2 ปีที่แล้ว

    Greetings from the BIG SKY. Nothing like a bit of calc to end the day.

  • @AbhishekSachans
    @AbhishekSachans 2 ปีที่แล้ว

    At 10:20, in the sex nd integral, it should be sin(3t).

  • @ee-prakalyadav
    @ee-prakalyadav ปีที่แล้ว

    I solve these question in my paper . But your techniques are quite impressive

  • @yokoyapen
    @yokoyapen 2 ปีที่แล้ว

    9:32 the 2 appears like magic

  • @melstadevosyan
    @melstadevosyan 2 ปีที่แล้ว +3

    How did sin(3tx) became sin(tx)?
    Are they equal?

    • @fadihamed4826
      @fadihamed4826 ปีที่แล้ว

      I've the same question also ... that it makes my brain explode

    • @amtep
      @amtep ปีที่แล้ว +1

      I think it was a mistake that didn't matter to the answer, because the integral of sin(ax)/x dx is the same for any nonzero a

  • @scienceresearchwithishan6965
    @scienceresearchwithishan6965 ปีที่แล้ว +1

    Bro u should also make a video doing this from contour integration using residue theorem and Jordan's lemma 😁😁

  • @fadiel-riachi6675
    @fadiel-riachi6675 2 ปีที่แล้ว

    I am confused by the evaluation of I'(0) and I(0) at 12:14 and 13:26 respectively. Shouldn't (sin(x)/x)^n be equal to 1 at x=0 for positive integers n? Is there something I am missing? In order to have a nice value for I'(t), we need cos(tx) to be 0. In other words, we need to evaluate at tx= pi(k-1)/2, which changes the expression a lot and affects the next integration that finds I(t).

    • @amtep
      @amtep ปีที่แล้ว +2

      If t = 0 then the sin(tx) term is 0 and the whole expression goes to 0.
      Remember that I is a function over t not over x, so x = 0 doesn't need to be considered anywhere.

    • @fadiel-riachi6675
      @fadiel-riachi6675 ปีที่แล้ว

      @@amtep Right, of course! Thank you!

  • @syamantagogoi
    @syamantagogoi 5 หลายเดือนก่อน

    10:14
    In the second integral it should have been Sin(3tx) in numerator and I think it would be difficult to get the final answer in this context.

  • @Manuel_Gestal
    @Manuel_Gestal ปีที่แล้ว +2

    10:13 wouldn't it be sin(3tx) instead of sin(tx) ??

    • @Ron-pe4bp
      @Ron-pe4bp 4 หลายเดือนก่อน

      Good catch but
      th-cam.com/video/HmuYjxcRIXo/w-d-xo.html
      So I think it doesn't matter.

  • @KingGisInDaHouse
    @KingGisInDaHouse ปีที่แล้ว +1

    Wouldn’t complex analysis work here?

  • @EntropicNightmare
    @EntropicNightmare 2 ปีที่แล้ว +1

    When you do the u substitution when computing I''(t), you get constant 3pi/4, which is fine for all t>0, but how do you justify that at t=0 where the integral appears to give zero when you go to fix your constants of integration?

  • @dipankarbanerjee1130
    @dipankarbanerjee1130 2 ปีที่แล้ว +1

    Actually what is Feynman's trick ? I am a high school student and this isn't in my syllabus but I am eager to know

  • @lilsourmango
    @lilsourmango ปีที่แล้ว

    At 6:20 why do we have cos(tx)-cos(2tx)?Where does the minus come from? And why do we have a plus afterwards?

  • @yabaminozomi
    @yabaminozomi ปีที่แล้ว

    10:14 why the sin (3tx) suddenly becomes sin(tx)

    • @Ron-pe4bp
      @Ron-pe4bp 4 หลายเดือนก่อน

      Good catch but
      th-cam.com/video/HmuYjxcRIXo/w-d-xo.html
      So I think it doesn't matter.

  • @tahsintarif6864
    @tahsintarif6864 2 ปีที่แล้ว

    make a video on solving 100 Putnam Calc 2 Problems

  • @khoozu7802
    @khoozu7802 2 ปีที่แล้ว

    A fastest way is applying the formula sin^3(x)=1/4(3sinx-sin3x)
    And using integrate by parts

  • @bisheshshakya3838
    @bisheshshakya3838 ปีที่แล้ว

    10:13 If I'm not mistaken, it's supposed to be sin(3tx) but you wrote sin(tx)....please clarify?

  • @ayoubelouafy6174
    @ayoubelouafy6174 2 ปีที่แล้ว

    There's a mistake in the 2nd derivative of I(t) in the 2nd line you got sin(3tx) in the 2nd term. All respect to u it's a hard integral .

  • @frederickwong4390
    @frederickwong4390 ปีที่แล้ว

    I think using the triple angle formula sin(3x)=3sin(x)-4(sin(x))^3 is easier. Unlike what other have said, there is no need to use contour integration.

  • @jeanmaxcoransoni2183
    @jeanmaxcoransoni2183 2 ปีที่แล้ว

    At 10:14 : error sin(3tx) not sin(tx)

  • @jackychan4640
    @jackychan4640 2 ปีที่แล้ว

    我想祝福你新年快樂happy Lunar New Year

  • @holyshit922
    @holyshit922 2 ปีที่แล้ว

    Integrate by parts twice with
    D I
    sin^3(x) 1/x^3
    then substitute u=3x
    finally i got
    3/4Int(sin(x)/x,x=0..infinity)
    then i calculated Laplace transform
    L(sin(t)/t) and plugged in s = 0

  • @jatingupta6198
    @jatingupta6198 2 ปีที่แล้ว +1

    I didn't understand what u did but i would have used product rule of integration using ILATE😅

  • @boombam5589
    @boombam5589 ปีที่แล้ว

    7:25
    Evil laughter 🤣

  • @maalikserebryakov
    @maalikserebryakov ปีที่แล้ว

    5:20 this is the main weakness in your approach ive noticed
    When you arrive at two viable techniques to modify the integration you force yourself to choose. Just do both!

  • @LuisHernandez-ip7gx
    @LuisHernandez-ip7gx ปีที่แล้ว

    Muchas gracias

  • @alibekturashev6251
    @alibekturashev6251 2 ปีที่แล้ว

    i have never seen you that tired🥺

  • @manishkumardeep2230
    @manishkumardeep2230 2 ปีที่แล้ว

    PLEASE MAKE A VIDEO ON FORBENIUS METHOD OF SPECIAL FUNCTIONS

  • @romanbykov5922
    @romanbykov5922 2 ปีที่แล้ว

    9:45 why did you differentiate the numerator here but didn't you differentiate the denominator of x^2?

    • @PaoloCasillo
      @PaoloCasillo 2 ปีที่แล้ว

      Because x^2 is a constant in t world.

  • @leonig100
    @leonig100 3 หลายเดือนก่อน

    at 10.19 sin(3tx) becomes sin(tx) after the separation of the 2 integrals. Is this correct?

  • @Sbombaflex
    @Sbombaflex 2 ปีที่แล้ว

    sin(3tx) right high corner , where did he go?

  • @saurabhkatiyar2704
    @saurabhkatiyar2704 2 ปีที่แล้ว

    Very very easy question

  • @uncelesteperro8258
    @uncelesteperro8258 ปีที่แล้ว

    10:12 how did he get rid of the 3 on sine's angle?

    • @Ron-pe4bp
      @Ron-pe4bp 4 หลายเดือนก่อน

      Good catch but
      th-cam.com/video/HmuYjxcRIXo/w-d-xo.html
      So I think it doesn't matter.

  • @aadisankar.s4449
    @aadisankar.s4449 2 ปีที่แล้ว +1

    Sir, please explain why there exists two types of vector products...

    • @ES-qe1nh
      @ES-qe1nh 2 ปีที่แล้ว +1

      There's three, actually

  • @parhuzamosgyorgy5310
    @parhuzamosgyorgy5310 2 ปีที่แล้ว

    With Fourier transform the difficulty level drops to ** max.

  • @Mini_Wolf.
    @Mini_Wolf. 8 หลายเดือนก่อน

    Can you do the taylor series of sin and work from there?

  • @darkknight32920
    @darkknight32920 ปีที่แล้ว

    Sorry for the naive question, but when solving for c, what if you let t equal any multiple of pi? Wouldn't that change what c is? Why is it possible to choose the "easiest" value?

  • @INSANITY335
    @INSANITY335 2 ปีที่แล้ว

    we can even use sin3theta here
    right?

  • @nirvikthapa9436
    @nirvikthapa9436 2 ปีที่แล้ว +1

    Me trying to figure out is it 12 Am or Pm in the clock

  • @nickharrison3748
    @nickharrison3748 2 ปีที่แล้ว

    what is the practical use of this equation?

  • @ichwillfrieden1635
    @ichwillfrieden1635 2 ปีที่แล้ว

    Start some hard math ,now we grow up , we need like hard algebra

  • @alexandermorozov2248
    @alexandermorozov2248 8 หลายเดือนก่อน

    10:13 - sin(3tx) !! 😜

  • @wydadiyoun
    @wydadiyoun 2 ปีที่แล้ว

    10:55 proof pleaaaaaaaaaaaaaaaaaaaaaaaaaase! why it always give pi/2 with any constant???

    • @wydadiyoun
      @wydadiyoun 2 ปีที่แล้ว

      ok nevermind, I figured it out with my effort

  • @Johnny-tw5pr
    @Johnny-tw5pr 2 ปีที่แล้ว +1

    Would this work? I(t)=(integral)sin^tx/x^t

  • @Wout680
    @Wout680 2 ปีที่แล้ว

    Hey blackpenredpen, I can't figure it out, but why is x^(1/log_b(x)) equal to b (the base of the logarithm)?

    • @spaghetti1383
      @spaghetti1383 2 ปีที่แล้ว +1

      Assume that identity is true. Then take log base b on both sides. Each side simplifies to 1. Logarithms are increasing and 1=1 so the identity must be true.

    • @Wout680
      @Wout680 2 ปีที่แล้ว

      @@spaghetti1383 That was a very clear explanation, thank you :)

  • @abdulmalek1118
    @abdulmalek1118 2 ปีที่แล้ว +1

    I have found a pretty nice question that I will suggest
    Solve the system
    a = exp (a) . cos (b)
    b= exp (a) . sin (b)
    Can be solved easily using Lambert "W" function by computing ( a+ib )
    And thanks

  • @crescenzosimeolisimeoli8756
    @crescenzosimeolisimeoli8756 2 ปีที่แล้ว

    Is this integral generalizable for n?

  • @physicsmath8293
    @physicsmath8293 2 ปีที่แล้ว

    14:42 sin(3tX) ---》 sin(tX) ?!!! I have a problem here 😕

  • @arsh.008
    @arsh.008 2 ปีที่แล้ว

    On the right half of the board, the second step where you took negative common, shouldn't it be -(9/4) and so on?

    • @amtep
      @amtep ปีที่แล้ว

      No he split the expression at the +, so the left half is for -sin(tx)•x and the right half is for sin(3tx)•3x

  • @wuzhai2009
    @wuzhai2009 5 หลายเดือนก่อน

    So many boxes of whiteboard markers!

  • @GauravKumar-vl7rt
    @GauravKumar-vl7rt 2 ปีที่แล้ว

    Love from India

  • @whyyat3470
    @whyyat3470 2 ปีที่แล้ว

    Why have you stopped making frequent videos?

  • @mrwest9840
    @mrwest9840 ปีที่แล้ว +1

    How can we write d/dx( sin^3x) = 3sin^2x cosx ?????? 😏

  • @SakshamSiwa
    @SakshamSiwa 5 หลายเดือนก่อน

    Bro what is your educational qualifications?

  • @emmagutielmejor
    @emmagutielmejor 2 ปีที่แล้ว

    Borwein integrals ?

  • @urvpatel2003
    @urvpatel2003 2 ปีที่แล้ว

    Have you done PhD in maths?
    How to become mathematician?

  • @chumdjr
    @chumdjr 2 ปีที่แล้ว +1

    請問曹老師,封面的獎牌是?(數奧?還是⋯)

    • @blackpenredpen
      @blackpenredpen  2 ปีที่แล้ว +2

      馬拉松獎牌 因為這是我一次做一百題數學的影片片段