2nd elegant method to evaluate the integral using differentiation under the integration sign

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น • 17

  • @slavinojunepri7648
    @slavinojunepri7648 วันที่ผ่านมา

    I was very impressed by this solution the moment I read it as a comment in another video with the same integral. Thanks for this video post.

    • @cipherunity
      @cipherunity  วันที่ผ่านมา

      Indeed, it is better than the 1st solution and you are welcome

  • @AnityaBibhab
    @AnityaBibhab วันที่ผ่านมา

    Hey there 🤗 thanks for the video 😊. You got a new subscriber ❤.

    • @Vedanshi-l4r
      @Vedanshi-l4r วันที่ผ่านมา

    • @cipherunity
      @cipherunity  วันที่ผ่านมา

      Thanks to you. You solution is better than mine which I presented in the 1st video.

  • @user-lu6yg3vk9z
    @user-lu6yg3vk9z วันที่ผ่านมา

    Have an idea for problem no method thinking about converting the cos(x)=cos(2*x/2)=cos^2(x/2)-sin^2(x/2) from there
    ((5)^1/2-(cos^2(x/2)-sin^2(x/2)))
    ((5)^1/2-(1-sin^2(x/2)-sin^2(x/2))
    ((5)^1/2-(1-2sin^2(x/2)))
    sec^6(x/2)/(sec^6(x/2)((5)^1/2-1+2sin^2(x/2))^3

    • @cipherunity
      @cipherunity  วันที่ผ่านมา

      What next

    • @user-lu6yg3vk9z
      @user-lu6yg3vk9z วันที่ผ่านมา

      sec^4(x/2) sec^2(x/2)/((sec^2(x/2))^3(5^1/2-1+2sin^2(x/2))^3)
      (tan^2(x/2)+1)^2 sec^2(x/2)/(sec^2(x/2)(5^1/2-1+2sin^2(x/2))^3
      (tan^2(x/2)+1)^2 sec^2(x/2)/(5^1/2sec^2(x/2)-sec^2(x/2)+2tan^2(x/2))

  • @holyshit922
    @holyshit922 วันที่ผ่านมา

    Use substitution
    cos(x) = (1 - sin(x))t
    cos^2(x) = (1 - sin(x))^2t^2
    (1 - sin^2(x)) = (1 - sin(x))^2t^2
    (1 - sin(x))(1 + sin(x)) = (1 - sin(x))^2t^2
    1 + sin(x) = (1 - sin(x))t^2
    1 + sin(x) = t^2 - sin(x)t^2
    sin(x)+sin(x)t^2 = t^2 - 1
    sin(x)(t^2 + 1) = t^2 - 1
    sin(x) = (t^2 - 1)/(t^2 + 1)
    cos(x) = (1 - (t^2 - 1)/(t^2 + 1))t
    cos(x) = 2t/(t^2 + 1)
    cos(x)dx = (2t(t^2+1)-2t(t^2-1))/(t^2+1)^2dt
    cos(x)dx = 4t/(t^2+1)^2dt
    2t/(t^2 + 1)dx = 4t/(t^2+1)^2dt
    dx = 2/(t^2+1)dt
    sqrt(5)-cos(x) = sqrt(5) - 2t/(t^2+1)
    sqrt(5)-cos(x) = (sqrt(5)t^2 - 2t + sqrt(5))/(t^2+1)
    But to use substitution we must divide interval of integration into two pieces
    \int_{1}^{\infty}\frac{(t^2+1)^3}{(\sqrt{5}t^2 - 2t + \sqrt{5})^3}\cdot\frac{2}{(t^2+1)}dt
    +\int_{-\infty}^{-1}\frac{(t^2+1)^3}{(\sqrt{5}t^2 - 2t + \sqrt{5})^3}\cdot\frac{2}{(t^2+1)}dt
    2(\int_{-\infty}^{-1}{\frac{(t^2+1)^2}{(\sqrt{5}t^2 - 2t + \sqrt{5})^3}}dt + \int_{1}^{\infty}{\frac{(t^2+1)^2}{(\sqrt{5}t^2 - 2t + \sqrt{5})^3}}dt)
    then use substitution
    t - 1/sqrt{5} = \frac{2}{\sqrt{5}}u

    • @user-lu6yg3vk9z
      @user-lu6yg3vk9z วันที่ผ่านมา

      How did u come up with substitution? cos(x)=(1-sin(x))t

    • @holyshit922
      @holyshit922 วันที่ผ่านมา

      @@cipherunity
      Did you differentiate
      sin(x) = (t^2 - 1)/(t^2 + 1)
      You have two ways
      1. Quotient rule
      2. Chain rule with algebraic manipulation
      sin(x) = (t^2 - 1)/(t^2 + 1) = 1 - 2/(t^2+1)
      I wrote it in the comment above
      Because of existence x = pi/2 in interval of integration you should divide interval of integration into two subintervals
      If you include that you will get right answer

    • @holyshit922
      @holyshit922 วันที่ผ่านมา

      @@user-lu6yg3vk9z For simplicity assume that interval of integration is [0,pi/2]
      We know that sqrt(1-w^2)=(1-w)t
      rationalizes integrand
      (we have rational parametrization of the curve y^2=1-x^2 this way)
      If we plug in w = sin(x)
      sqrt(1-sin^2(x))=(1-sin(x))t
      Here I needed interval [0,pi/2]
      because of square root
      cos(x) = =(1-sin(x))t

    • @cipherunity
      @cipherunity  20 ชั่วโมงที่ผ่านมา

      @@holyshit922 Every thing is clear except one thing. Explain your limits for 1 to infinity and -infinity to -1. What happen between -1 and 1

    • @holyshit922
      @holyshit922 14 ชั่วโมงที่ผ่านมา

      @@cipherunity Problem is that in original interval there is point x = pi/2
      which causes problems so we must divide interval into subintervals
      cos(x)=(1-sin(x))t
      so t = cos(x)/(1-sin(x))
      and what happen for x=pi/2 which is inside of interval of integration