Russian Math Olympiad | A Very Nice Geometry Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ธ.ค. 2024

ความคิดเห็น • 21

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب วันที่ผ่านมา +6

    The lines SO and QP intersect at point E and the triangle ESQ is a right triangle, hence SE is the diameter of the circle, so SE = 8. According to the Pythagorean theorem EQ = √55, we have cosQES √55/8. Applying the AI Kashi theorem to the triangle EOP, we find x² = 4² + (√55-2)² - 2(4)(√55-2) * √55/8 = 20 - 2√55, so x = √(20 - 2√55)

  • @harikatragadda
    @harikatragadda วันที่ผ่านมา +7

    Complete the circle and by the Intersecting Chords Theorem at P,
    (4-X)(4+X)=2*(√55 - 2)
    X=√(20-2√55)

  • @MarieAnne.
    @MarieAnne. วันที่ผ่านมา +7

    Complete the circle. Extend SO until it intersects circle at point T. Since ST passes through center O of circle, then OS is a radius and ST is a diameter:
    ST = 2 * OS = 2 * 4 = 8
    Since ∠SQP = 90°, then this angle must be subtended by a diameter with one endpoint at S (ie diameter ST). Therefore, if we extend QP it will also intersect circle at T.
    Since △QST is a right triangle, we can use Pythagorean Theorem to find QT
    QT² = ST² − QS² = 8² − 3² = 64 − 9 = 55
    QT = √55
    Extend radius AO to other side of circle at point C.
    Diameter AC is divided into segments *AP = 4 − x* and *PC = 4 + x*
    Chord QT is divided into segments *QP = 2* and *PT = √55 − 2*
    Using intersecting chord theorem, we get
    2 (√55 − 2) = (4 − x) (4 + x)
    2√55 − 4 = 16 − x²
    x² = 20 − 2√55
    *x = √(20 − 2√55) ≈ 2.273*

    • @Monsieur_Cauchemar-YT
      @Monsieur_Cauchemar-YT วันที่ผ่านมา

      Well done. Did it the exact same way. Much easier.

  • @marioalb9726
    @marioalb9726 วันที่ผ่านมา +3

    Pytagorean theorem :
    (2*4)² = 3² + (y+2)²
    y² + 4y + 4 = 8²-3² = 55
    y² - 4y -51 = 0. --> y= 5,4162cm
    tan α = 3/(2+y) --> α = 22,0243°
    Cosine rule :
    x² = y² + 4² - 2*4*y*cosα
    x = 2,2732 cm ( Solved √ )

  • @marioalb9726
    @marioalb9726 วันที่ผ่านมา +1

    Pytagorean theorem :
    (2*4)² = 3² + (y+2)²
    y² + 4y + 4 = 8²-3² = 55
    y² - 4y -51 = 0. --> y= 5,4162cm
    Intersecting chords theorem
    (R-x)(R+x) = 2.y
    R²-x² = 2.y
    x² = R² - 2y = 4² - 2*5,4162
    x = 2,2732 cm ( Solved √ )

  • @kateknowles8055
    @kateknowles8055 วันที่ผ่านมา

    Thank you, Math Booster, for another problem. (This time both easy enough and hard enough for me.)
    I tackled it this way:
    QOS is a (4,4,3) triangle . Working out angle OQS: arccos( 4.4 +3.3 -4.4) / 2.4.3 = arccos (3/ 8) = theta {cosine rule}
    {OQS + OQP = 90 degrees = arccos (0) so sin( OQS + OQP) = (1 - 9/64) + 9/64 =1} sin (OQP) = cos OQS = 3/8 1- 9/64 = 55/64= cos^2(90 -theta)
    OQP is a (4,2,X) triangle. X^2 = 4.4 +2.2 - 2. 4.2.cos (OQP ) cos OQ P = ( 16+4 - X^2)/16 { cosine rule again, with a twist} cos^2 (OPQ) = (20-x^2)^2 / 256 = 55/64
    55 = (20-X^2)(20-X^2)/4 220 = (400 -40X^2 + X^4) X^4 -40 X^2 + (400-220 ) = 0
    X^2 = (40 +/- sqrt(1600- 4.1.180) )/2 1600-720 = 880= 4. 220 < 30^2 so the smaller value is correct because X is less than (the radius ) 4.
    X"2 = 20 - sqrt(220) X= +sqrt(20- sqrt(220) X approx = sqrt(5.17) = 2.27

  • @hadigayar6786
    @hadigayar6786 วันที่ผ่านมา +2

    in triangle OQS
    cosine rule to find cos(OQS)=3/8
    OQS+OQP=90
    cos(OQP)=root55/8
    also cosine rule in triangle OQP then we can get x
    (solved)

  • @五十嵐特許事務所
    @五十嵐特許事務所 วันที่ผ่านมา

    By connecting point O and point Q, we get ⊿OQS. Since ⊿OQS is an isosceles triangle, if we set ∠QOS=2θ, then ∠OQS=90°-θ. ∴∠PQO=θ. Applying the law of cosines to ⊿OQS, cos2θ=(OS^2+OQ^2-QS^2)/2×OQ×OS=23/32.
    Since cos2θ=2(cosθ)^2-1, so, cosθ=√55/8.
    Applying the law of cosines to ⊿QPO, X^2=PQ^2+OQ^2-2OQ×PQcosθ=20-2√55.
    ∴X=sqrt(20-2√55)

  • @JoanRosSendra
    @JoanRosSendra 13 ชั่วโมงที่ผ่านมา

    Completamos el círculo y trazamos la prolongación de AO (hasta punto N), completando el diámetro vertical. Trazamos también la prolongación de QP hasta cortar la circunferencia en el punto M. SM serà diámetro porque el ángulo MQS es de 90°. Por tanto, en MQS la hipotenusa (2R) es = 8 y el cateto menor es = 3. Calculamos el otro cateto que es = raíz de 55.
    Teorema de cuerdas aplicado a las cuerdas QM y AN, que se cortan en P:
    AP * PN = MP * PQ
    (4-X) * (4+X) =
    2 * [(raíz de 55)-2]
    Desarrollando y despejando, llegamos al resultado ~ 2.7 unds
    Saludos

  • @rathinaveluthiruvenkatam610
    @rathinaveluthiruvenkatam610 18 ชั่วโมงที่ผ่านมา

    The company owner X , to cheat Income Tax, deducts advertisement expense. The owner of the advertising channel is Y. Find the relation between X and Y.

  • @zehradiyab3439
    @zehradiyab3439 วันที่ผ่านมา

    If we draw the right angled triangle QSR in the semi circle
    RS=2r=8
    QR=√(8²-3²)=√55
    PS=√(2²+3²)=√13
    x²=(√13)²+4²-2×√13×4 cos(PSO)
    PSO=QSR-QSP
    QSR=α=acos(3/8)=asin((√55)/8)
    QSP=β=acos(3/√13)=asin(2/√13)
    x²=13+16-(8√13)cos(α-β)
    x²=29-(8√13)(cosαcosβ+sinαsinβ)
    x²=29-8√13{(cos acos3/8)(cos acos3/√13)+(sin asin((√55)/8)(sin asin2/√13)
    x²=29-8√13{(3/8)(3/√13)+((√55)/8)(2/√13)}
    x²=29-(9+2√55)=20-2√55
    x=√(20-2√55)

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 วันที่ผ่านมา

    (2)^2 (3)^2.(4)^2={4+9+16}=29 90°AB/29= =3.3AB (AB ➖ 3AB+3).

  • @abasaliabolhassani
    @abasaliabolhassani วันที่ผ่านมา

    So good. Thanks 🎉

  • @shaozheang5528
    @shaozheang5528 วันที่ผ่านมา

    Extend SO after completing the circle

  • @parvinmmc
    @parvinmmc วันที่ผ่านมา

    A very good geometry problem🎉

  • @Christopher-e7o
    @Christopher-e7o วันที่ผ่านมา

    X,2x+5=8

  • @luciakinska9742
    @luciakinska9742 วันที่ผ่านมา

    2,273

  • @zdrastvutye
    @zdrastvutye 19 ชั่วโมงที่ผ่านมา

    the tricky part was the negative root. vnimanye!
    10 print "mathbooster-russian math olympiad geometry dec2024":dim x(3),y(3)
    20 l1=4:l2=3:l3=2:sw=sqr(l1^2+l2^2+l3^2)/67:l4=sqr(l3^2+l2^2):xp=0:xs=sw:goto 70
    30 ys=sqr(l1^2-xs^2):yp=ys+sqr(abs(l4^2-xs^2)):yq=(l1^2-l3^2+yp^2)/2/yp
    40 if yq>l1 then return
    50 xq=sqr(abs(l1^2-yq^2)):dgu1=(xp-xq)*(xs-xq)/l1^2:dgu2=(yp-yq)*(ys-yq)/l1^2
    60 dg=dgu1+dgu2:return
    70 gosub 30:if yq>l1 then else 90
    80 xs=xs+sw:goto 70
    90 xs1=xs:dg1=dg:xs=xs+sw:xs2=xs:gosub 30:if dg1*dg>0 then 90
    100 xs=(xs1+xs2)/2:gosub 30:if dg1*dg>0 then xs1=xs else xs2=xs
    110 if abs(dg)>1E-10 then 100
    120 print "x=";yp: fe=(xq^2+yq^2-l1^2)/l1^2*100:print "der fehler=";fe;"%"
    130 x(0)=0:y(0)=0:x(1)=xs:y(1)=ys:x(2)=xq:y(2)=yq:x(3)=0:y(3)=yp:goto 150
    140 xbu=x*mass:ybu=y*mass:return
    150 masx=1200/l1:masy=850/l1:if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window.

  • @mohsenjalily2181
    @mohsenjalily2181 วันที่ผ่านมา

    Very nice
    🙏🙏🙏💰💴💸💵