How to Solve This Tricky Geometry Problem Made up of Three Circles

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ธ.ค. 2024

ความคิดเห็น •

  • @imetroangola17
    @imetroangola17 2 หลายเดือนก่อน +1

    Ótimo questão, parabéns!!!🎉🎉🎉

    • @Quantcircle
      @Quantcircle  2 หลายเดือนก่อน +1

      @@imetroangola17
      Fico muito feliz que você tenha gostado deste vídeo. Espero que continue me apoiando assim, isso me inspira a criar vídeos ainda melhores. Obrigado!

  • @lesliederrar9718
    @lesliederrar9718 หลายเดือนก่อน +2

    very smart thank you

    • @Quantcircle
      @Quantcircle  หลายเดือนก่อน

      @@lesliederrar9718
      Thank you so much for your kind words! I'm glad you enjoyed the video. Your support means a lot to me and motivates me to create more smart and helpful content. Stay tuned for more exciting videos!

  • @powerofSanatandharma
    @powerofSanatandharma 2 หลายเดือนก่อน +1

    Nice sir

    • @Quantcircle
      @Quantcircle  2 หลายเดือนก่อน +1

      @@powerofSanatandharma
      Thank you so much for your kind words! Your support means the world to me, and it's because of wonderful viewers like you that I’m inspired to keep creating. I’m so grateful that the video resonated with you. Wishing you lots of learning and joy ahead! 🙏💖

  • @quigonkenny
    @quigonkenny หลายเดือนก่อน +1

    As we are given the ratio of BH to HA as 10:3, we know that the actual length of BH and HA will be 10k and 3k, with k being an as-yet unknown constant.
    As BH and FB are tangents to circle O that intersect at B, then by the two tangents theorem, FB = BH = 10k. Similarly, as HA and AD are tangents to circle O that intersect at A so AD = HA = 3k.
    As AC and CB are tangent to circle O at D and F respectively, then ∠ODC = ∠CFO = 90°, as OD and OF are radii of circle O. Since ∠DCF = 90° as well, then ∠FOD must equal 360°-3(90°) = 90°, and as OF and OD are equal in length and adjacent, quadrilateral ODCF is a square with side length of 2.
    The side lengths of triangle ∆ACB are thus as follows: BA = 10k+3k = 13k, AC = 3k+2, CB = 2+10k.
    Triangle ∆ACB:
    AC² + CB² = BA²
    (3k+2)² + (10k+2)² = (13k)²
    9k² + 12k + 4 + 100k² + 40k + 4 = 169k²
    109k² + 52k + 8 = 169k²
    60k² - 52k - 8 = 0
    15k² - 13k - 2 = 0
    15k² - 15k + 2k - 2 = 0
    15k(k-1) + 2(k-1) = 0
    (k-1)(15k+2) = 0
    k - 1 = 0 | 15k + 2 = 0
    k = 1 | k = -2/15 ❌ k ≥ 0
    BA = 13(1) = 13
    AC = 3(1) + 2 = 5
    CB = 2 + 10(1) = 12
    As CB is tangent to circle Q at G, then ∠QGB = 90°, as QG is a radius of circle Q. As AC is tangent to circle P at E, then ∠AEP = 90°, as PE is a radius of circle P.
    As PE and OD are both perpendicular to AC and thus parallel to each other, then ∠EPA and ∠DOA are corresponding angles and thus congruent. As ∠PAE = ∠OAD, then ∆AEP and ∆ADO are similar triangles by angle-angle similarity.
    As the point of tangency between two circles is collinear with the two centers, then OP = 2+r₁.
    Triangle ∆ADO:
    AD² + OD² = OA²
    3² + 2² = OA²
    OA² = 9 + 4 = 13
    OA = √13
    OD/OA = PE/PA
    2/√13 = r₁/(√13-(2+r₁))
    √13r₁ = 2(√13-2-r₁)
    √13r₁ = 2√13 - 4 - 2r₁
    √13r₁ + 2r₁ = 2√13 - 4
    r₁(√13+2) = 2√13 - 4
    r₁ = (2√13-4)/(√13+2)
    r₁ = (2√13-4)(√13-2)/(√13+2)(√13-2)
    r₁ = (26-4√13-4√13+8)/(13-4)
    [ r₁ = (34-8√13)/9 ≈ 0.573cm ]
    As OF and QG are both perpendicular to CB and thus parallel to each other, then ∠BQG and ∠BOF are corresponding angles and thus congruent. As ∠GBQ = ∠FBO, then ∆QGB and ∆OFB are similar triangles by angle-angle similarity.
    As the point of tangency between two circles is collinear with the two centers, then OQ = 2+r₂.
    Triangle ∆OFB:
    OF² + FB² = OB²
    2² + 10² = OB²
    OB² = 4 + 100 = 104
    OB = √104 = 2√26
    OF/OB = QG/QB
    2/2√26 = r₂/(2√26-(2+r₂))
    1/√26 = r₂/(2√26-2-r₂)
    √26r₂ = 2√26 - 2 - r₂
    √26r₂ + r₂ = 2√26 - 2
    r₂(√26+1) = 2√26 - 2
    r₂ = (2√26-2)/(√26+1)
    r₂ = (2√26-2)(√26-1)/(√26+1)(√26-1)
    r₂ = (52-2√26-2√26+2)/(26-1)
    [ r₂ = (54-4√26)/25 ≈ 1.344cm ]

    • @Quantcircle
      @Quantcircle  หลายเดือนก่อน

      @@quigonkenny
      Thank you so much for sharing your solution! I really appreciate the effort you've put in, and it's always interesting to see different approaches to solving a problem. It's great that we both arrived at the correct answer through different methods-this shows the beauty of math, where there can be multiple ways to reach the same conclusion. Keep up the great work, and feel free to share more of your ideas!

  • @DhanushJoshi-u1r
    @DhanushJoshi-u1r 2 หลายเดือนก่อน +2

    "Great video! The way you explained the geometric concepts was so clear and easy to understand. The visual aids and examples really helped solidify my understanding. Keep up the fantastic work!"

    • @Quantcircle
      @Quantcircle  2 หลายเดือนก่อน +1

      @@DhanushJoshi-u1r
      Thank you so much for your kind words and for liking the video! I'm really glad you enjoyed it. Your support means a lot to me and motivates me to keep creating helpful content. Stay tuned for more...

  • @VirendraKumar-z4u
    @VirendraKumar-z4u 2 หลายเดือนก่อน +1

    Nice animation

    • @Quantcircle
      @Quantcircle  2 หลายเดือนก่อน

      @@VirendraKumar-z4u
      Thank you for your support, which I received in the form of a comment. I hope it continues to inspire me to create even better videos.

  • @gnanadesikansenthilnathan6750
    @gnanadesikansenthilnathan6750 6 วันที่ผ่านมา +1

    r1 = 1, r2=1

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 หลายเดือนก่อน +1

    (2)^2=4 180ABC/4=4.20 4.2^10 4.2^2^5 2^2.1^1^1 1^2 .1 2(ABC ➖ 2ABC+1).

  • @zdrastvutye
    @zdrastvutye หลายเดือนก่อน

    yes it is tricky but can be solved. the repeated calculation changes the centerpoint of the circle with its known radius until
    the quotient "fl=" as written in line 20, is reached:
    10 print "quant circle-how to solve this tricky geometry problem with 3 circles"
    20 dim x(1,2),y(1,2),r(2):r(0)=2:sw=r(0)/10:fl=10/3:y(1,0)=r(0):ym=r(0):y(1,0)=ym:nr=30
    30 nr=30 :goto 150
    40 ys=y(1,0)+sqr(abs(r(0)^2-(xs-xm)^2)):dgu1=(xs^2+ys^2)/r(0)^2:dgu2=xs*xm/r(0)^2
    50 dgu3=ys*ym/r(0)^2:dg=dgu1-dgu2-dgu3:return
    60 xm=r(0)+sw:gosub 40
    70 dg1=dg:xm1=xm:xm=xm+sw:if xm>20*r(0) then stop
    80 xm2=xm:gosub 40:if dg1*dg>0 then 70
    90 xm=(xm1+xm2)/2:gosub 40:if dg1*dg>0 then xm1=xm else xm2=xm
    100 if abs(dg)>1E-10 then 90
    110 return
    120 gosub 60:ye=ys/xs*(xm+r(0)):lbh=sqr(xs^2+ys^2):lah=sqr((xm+r(0)-xs)^2+(ye-ys)^2)
    130 lac=ye:df=lbh/lah: df=df-fl:return
    140 return
    150 xs=sw:gosub 120
    160 xs1=xs:df1=df:xs=xs+sw:if xs>nr*r(0) then stop
    170 xs2=xs:gosub 120:if df1*df>0 then 160
    180 xs=(xs1+xs2)/2:gosub 120:if df1*df>0 then xs1=xs else xs2=xs
    190 if abs(df)>1E-10 then 180
    200 lbc=sqr((lbh+lah)^2-lac^2):lab=lbh+lah:print "lbh=";lbh:print"lah=";lah:print "lab=";lab
    210 print "lbc=";lbc;"lac";lac: print xs,"%",ys
    220 x(0,0)=0:y(0,0)=0:x(0,1)=lbc:x(0,2)=x(0,1):y(0,2)=ye:x(1,0)=xm
    230 xmu=sw:goto 260:rem den berechneten mittelpunkt verwenden ***
    240 ymu=xmu/xm*ym:ru=ymu:dgu1=(xm-xmu)^2/r(0)^2:dgu2=(ym-ymu)^2/r(0)^2:dgu3=(ru+r(0))^2/r(0)^2
    250 dg=dgu1+dgu2-dgu3 :return
    260 gosub 240
    270 dg1=dg:xmu1=xmu:xmu=xmu+sw:xmu2=xmu:gosub 240:if dg1*dg>0 then 270
    280 xmu=(xmu1+xmu2)/2:gosub 240:if dg1*dg>0 then xmu1=xmu else xmu2=xmu
    290 if abs(dg)>1E-10 then 280
    300 x(1,1)=xmu:y(1,1)=ymu:r(1)=ru:dx=xm-lbc:dy=ym-ye:k=sw:goto 330
    310 dxk=k*dx:dyk=k*dy:xmu=lbc+dxk:ymu=ye+dyk:ru=lbc-xmu:dgu1=(xmu-xm)^2/r(0)^2
    320 dgu2=(ymu-ym)^2/r(0)^2:dgu3=(ru+r(0))^2/r(0)^2:dg=dgu1+dgu2-dgu3:return
    330 gosub 310
    340 dg1=dg:k1=k:k=k+sw:k2=k:gosub 310:if dg1*dg>0 then 340
    350 k=(k1+k2)/2:gosub 310:if dg1*dg>0 then k1=k else k2=k
    360 if abs(dg)>1E-10 then 350
    370 x(1,2)=xmu:y(1,2)=ymu:r(2)=ru:masx=1200/x(0,1):masy=850/y(0,2)
    380 if masx
    run in bbc basic sdl and hit ctrl tab to copy from the results window. you may add "@zoom%=1.4*@zoom%" at the start.

    • @Quantcircle
      @Quantcircle  หลายเดือนก่อน

      @@zdrastvutye amazing! 👏