Math Olympiad | A Very Nice Geometry Problem

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ธ.ค. 2024

ความคิดเห็น • 26

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 2 วันที่ผ่านมา +4

    The triangle FCE is a right triangle, so CD * CE = CF², i.e. 2AD * CD = 25, so AD * CD = 25/2, which is the area of the rectangle.

  • @bpark10001
    @bpark10001 วันที่ผ่านมา +1

    Easier way: let r = circle's radius. Construct radius OF. For 2 right triangles, ADO & ADC, use Pythagorean formula to calculate (& set equal) side AD. Let X = DO
    r² - X² = 5² - (r + X)². r² & X² cancel out giving 2r² + 2X² = 25. Area ABCD = r(r + X).
    r² + rX = 25/2. r(r + X) = area = 25/2.

  • @kateknowles8055
    @kateknowles8055 วันที่ผ่านมา +1

    Thank you for another nice Geometry problem
    Letting BC = r, noticing that r also equals 1/2 × EC , and that FD^2 +DC^2 =25
    If angle DCF = arctan (t ) , then t^2 = FD^2/ DC^2
    With EO= OC = r , there is also an isosceles triangle FOC with angle FOC = 180 degrees - 2× angle DCF
    In FOC , the cosine rule gives: cos(FOC) = (2×r^2-25)/ (2×r×r) = 1- 25/ (2×r×r)
    cos (2A)== 2 cos^2 (A) - 1 so 2cos^2 (DCF) - 1 = 1 - 25/(2×r×r) so cos^ 2 (DCF) = 1/2(2 - 25/(2×r×r) = 1 - (25 /(4×r×r))
    sin^2 (DCF) = 25/(4×r×r) * so sin (DCF) = 5/(2r) and sin (DCF) = FD/5
    2 r= 25/ FD
    Drawing FE to form a right-angled triangle on EC gives cos(ECF) = 5/2r * Putting these together sin (DCF) = cos (DCF ) so FD=DC =r
    *Now, one of the starred equations is wrong, because in the diagram, F is on AD and not on AB.
    so now I will watch the video and read comments .

    • @kateknowles8055
      @kateknowles8055 วันที่ผ่านมา

      Interestingly: the area would be squarey and would still be 25/2 if PC were equal to 5, and, in that problem, r would be 5/ (2^(1/2)).

  • @pwmiles56
    @pwmiles56 2 วันที่ผ่านมา +1

    AD=r, radius of semicircle
    Put AB = a, DF = h
    In triangle CDF
    h^2 + a^2 = 5^2
    OF = a - r
    In triangle OFD
    h^2 + (a-r)^2 = r^2
    h^2 + a^2 - 2ar + r^2 = r^2
    h^2 + a^2 = 2ar
    2ar = 5^2
    Area ABCD = ar = 25/2

  • @gandelve
    @gandelve วันที่ผ่านมา +3

    I like doing it without trigonometry. Use the fact that triangles DEF and DFC are similar.

  • @五十嵐特許事務所
    @五十嵐特許事務所 วันที่ผ่านมา +1

    Let ∠FCD=θ. AB=CD=5cosθ…(1).
    If BC=X, then X is equal to the radius of the circle. If E and F are connected, ⊿FEC becomes a right triangle, so ECcosθ=FC=5. Since EC=2X, FC=5, 2Xcosθ=5. ∴X=5/(2cosθ)…(2)
    The area S of rectangle ABCD is S=AB×BC, so according to (1) and (2), S=(5cosθ)×(5/2cosθ)=25/2…(Answer)

  • @marioalb9726
    @marioalb9726 2 วันที่ผ่านมา +1

    Extremely easy
    A = b.h = 5 * (½5) = 12,5 cm²
    Position of point F is not defined, we can choose its position, and the original conditions are still fulfilled.
    I chose point F be equal to point E
    Chord "5' becomes the diameter of semicircle and base of rectangle, and the radius of semicircle is the height of rectangle.
    The rectangle increased its base, reduced its height, but the area is the same !!

    • @marioalb9726
      @marioalb9726 2 วันที่ผ่านมา +2

      Other option is to equalize point F and P
      Chord "5" becomes at 45°
      Rectangle becomes a square,
      and all original conditions are still meeting.
      A = ½d² = ½5² = 12,5 cm²

    • @kateknowles8055
      @kateknowles8055 วันที่ผ่านมา

      @@marioalb9726 (Although the diagram shows F on AD not F on AB) . Well done that you show that only the required area is dependent on original conditions, and that theta and radius are not.

    • @marioalb9726
      @marioalb9726 วันที่ผ่านมา +1

      ​​​​​@@kateknowles8055
      Point F always is on AD, that doesn't change.
      In the border condition I wrote (rectangle becomes a square), F is on AD and on AB, because points F, A and P are the same point.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 วันที่ผ่านมา

    (5)^2=25 {90°A+90°B+90°C+90°D}=360°ABCD/25=13.35 1^1.3^2^3 1^2^3 2^3 (ABCD ➖ 3ABCD+2).

  • @santiagoarosam430
    @santiagoarosam430 2 วันที่ผ่านมา

    Hacemos coincidir E con D→ CF=CE→ Radio =BC=5/2→ Área ABCD =5*5/2=25/2 =12,5.
    Gracias y saludos.

  • @jarikosonen4079
    @jarikosonen4079 2 วันที่ผ่านมา +1

    This can solve sometimes easily selecting the CD=r or CD=2r case.

  • @raghvendrasingh1289
    @raghvendrasingh1289 2 วันที่ผ่านมา

    We join E & F
    cos t = 5/ 2 r , cost = CD/5 , t is angle between diameter and CF
    2 r CD = 25
    area = 25/2 sq units

  • @nenetstree914
    @nenetstree914 2 วันที่ผ่านมา +1

    12.5

  • @brettgbarnes
    @brettgbarnes 2 วันที่ผ่านมา

    Brought back the old outro music! 👍👍

  • @marioalb9726
    @marioalb9726 2 วันที่ผ่านมา +1

    A = ½5² = 12,5 cm² ( Solved √ )

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 2 วันที่ผ่านมา

    Can we find radius ?

    • @bpark10001
      @bpark10001 วันที่ผ่านมา +2

      Cannot. Problem does not constrain radius, but area is constrained!

  • @CliffordMorris-ls9lc
    @CliffordMorris-ls9lc 2 วันที่ผ่านมา +1

    The method is clear but very long drawn out explanation with too many now etc and gulps . Between TH-cam ads and the explanation I had to watch it twice before it was clear what was happening. The maths is not difficult but you need to realise TH-cam intersperses it so it is far too long to drag out explanations. Say it simply like I am going to use Cos theta in the two triangles and compare the value of each. I will be able to obtain the length of the rectangle . Thus … . Do not spend time telling people that rectangles have four right angles and opposite sides are equal as that is the definition. If you must do it say it separately and move on.

    • @PS-mh8ts
      @PS-mh8ts วันที่ผ่านมา

      youtube compensation is tied to video length, and hence this prolonging.
      you can solve this problem without trigonometry.
      Consider the △FEC, which is a right-triangle (because ∠EFC is 90° by virtue of being inscribed in a semicircle).
      We know that an altitude (such as FD) of a right-triangle divides the triangle into similar triangles.
      i.e., △CFD ~ △CEF
      Thus, CF/CE=CD/CF
      i.e., CF²=CE.CD
      5²=CE.CD -- (i)
      But CE=diameter of semi-circle=2*BC (Because BC=AD=radius of circle, as from diagram)
      Thus, from (i), we get: 5²=(2*BC).CD => BC.CD=5²/2=25/2
      But BC.CD is the area of rectangle.
      i.e., Area=25/2 square units.