an interesring integral

แชร์
ฝัง
  • เผยแพร่เมื่อ 3 ม.ค. 2025

ความคิดเห็น • 11

  • @Metaverse-d9f
    @Metaverse-d9f 3 หลายเดือนก่อน +1

    really "interesring" :)

  • @maxvangulik1988
    @maxvangulik1988 3 หลายเดือนก่อน

    sin(2pi-t)=-sin(t)

  • @holyshit922
    @holyshit922 3 หลายเดือนก่อน

    Is this really the result
    My program for trapezoid method gives me numerical value of
    ln(1+sqrt(3)/2)*Pi
    This result is confirmed by CAS programs like Maple

    • @seegeeaye
      @seegeeaye  3 หลายเดือนก่อน

      @@holyshit922 as for this particular integral, the result should be right

    • @holyshit922
      @holyshit922 3 หลายเดือนก่อน

      @@seegeeaye Are you sure ?
      Numerical value of this integral is 1.9597591638
      but your result is 1.273806205

    • @seegeeaye
      @seegeeaye  3 หลายเดือนก่อน

      @@holyshit922 are they the same integral? my answer should be ok unless you find a mistake in the process

    • @holyshit922
      @holyshit922 3 หลายเดือนก่อน

      @@seegeeaye I tried different approach
      A little bit more difficult than yours
      \int_{0}^{\pi}\ln{(2+cos(x))}dx = \int_{0}^{\frac{\pi}{2}}\ln{(2+cos(x))}dx + \int_{\frac{\pi}{2}}^{\pi}\ln{(2+cos(x))}dx
      \int_{0}^{\frac{\pi}{2}}\ln{(2+\sin(x))}d(\frac{\pi}{2}-x) + \int_{0}^{\frac{\pi}{2}}\ln{(2-\cos(x))}dx
      \int_{0}^{\frac{\pi}{2}}\ln{(3+\cos^2(x))}dx
      \int_{0}^{\frac{\pi}{2}}\ln{(\frac{3}{\cos^2{x}}+1)}dx +2\int_{0}^{\frac{\pi}{2}}{\ln{(cos(x))}dx}
      t = tan(x)
      \int_{0}^{\infty}\frac{\ln(4+3x^2)}{1+x^2}dx +2\int_{0}^{\frac{\pi}{2}}{\ln{(cos(x))}dx}
      We know that \int{\frac{6x^2y}{4+3x^2y^2},y=0..1} = ln(4+3x^2)-ln(4)
      so we can convert integral \int_{0}^{\infty}\frac{\ln(4+3x^2)}{1+x^2}dx
      to double integral then change order of integration and convert to iterated integral
      We probabliy could use also complex integration to calculate \int_{0}^{\infty}\frac{\ln(4+3x^2)}{1+x^2}dx
      I like your approach because it is as simple as possible but there must be somewhere a mistake

    • @seegeeaye
      @seegeeaye  3 หลายเดือนก่อน

      @@holyshit922 I try to follow yours, it's too complicated. I just double checked mine again just now, I didn't see any mistake, I believe my answer is correct, not even approximation