Can you find the value of theta? |

แชร์
ฝัง
  • เผยแพร่เมื่อ 11 พ.ย. 2024

ความคิดเห็น • 5

  • @holyshit922
    @holyshit922 2 หลายเดือนก่อน

    Drop perpendicular from P to BC
    Let Q be intersection of ths perpendicular and BC
    Let R be the point on PQ such that PR = 2PQ
    Triangle RCP is isosceles
    then if we are able to show that triangle RPB is equilateral the problem is solved
    But it seems that it leads to nowhere
    Yes this sine rule solution is quite easy and i probably will get it

  • @oxbmaths
    @oxbmaths หลายเดือนก่อน

    Nice problem and surprisingly neat answer!
    My contribution (using sₙ=sin(n°), cₙ=cos(n°), tₙ=tan(n°)):
    s₂₀s₃₀s₈₀ / (s₁₀s₄₀+ s₂₀s₃₀c₈₀)
    = s₂₀s₃₀s₈₀ / ((s₄₀+ s₂₀s₃₀)c₈₀) [ ∵ s₁₀=c₈₀]
    = s₂₀s₃₀s₈₀ / ((s₄₀+ (s₈₀- s₄₀)/2)c₈₀)
    = s₂₀s₃₀s₈₀ / ((s₈₀+ s₄₀)/2)c₈₀)
    = s₂₀s₃₀s₈₀ / (2s₆₀c₂₀/2)c₈₀)
    = s₂₀s₃₀s₈₀ / (c₂₀c₃₀c₈₀) [∵ s₆₀=c₃₀]
    = t₂₀t₃₀t₈₀ (× t₄₀/t₄₀)
    = t₄₀t₂₀t₈₀ · t₃₀ · t₅₀ [∵ t₅₀=1/t₄₀]
    = t₆₀ · t₃₀ · t₅₀ [∵ tan(60°-x) tan(x) tan(60°+x) = tan(3x)]
    = t₅₀ [∵ t₆₀=1/t₃₀]

  • @Why553-k5b_1
    @Why553-k5b_1 2 หลายเดือนก่อน

    theta=180-70-30-a°
    a°=180-10-b°
    b°=360-120-(150-theta)
    b°=240-(150-theta)
    b°=90+theta
    a°=170-(90+theta)
    a°=80-theta
    theta=80-a=80-(80-theta)=theta
    W H A T T H E F U C K

    • @rakesh.a.c
      @rakesh.a.c 2 หลายเดือนก่อน

      Because theta-p = -90 is same as p-theta = 90. You are solving using the same equation twice. You cannot form 2 distinct equations using theta and p for the above problem. If you do you get the thing you got above. It's not wrong but we are not solving the problem either. It's like saying 2=2 or x=x. We are not getting anywhere with those equations.

  • @robertjarman3703
    @robertjarman3703 2 หลายเดือนก่อน

    There are not that many possible solutions. Especially given that the numbers are in multiples of ten. Brute forcing it would probably be faster.