A Homemade Exponential Equation | 2^{x+1}+2^{1/x^2}=6

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ม.ค. 2025

ความคิดเห็น • 36

  • @アーキア-o4o
    @アーキア-o4o 2 ปีที่แล้ว +3

    いつもいい問題をありがとう😊

  • @SeekingTheLoveThatGodMeans7648
    @SeekingTheLoveThatGodMeans7648 2 ปีที่แล้ว +2

    From inspection it can be seen to accept x=1 as a root. At that point, calculus can be used to show that this is a minimum, hence the only positive root.

  • @brianstine2006
    @brianstine2006 2 ปีที่แล้ว +4

    A very very close approximation to the negative x solution of this equation is x = -1/sqrt(1+log_2(3-cbrt(1/4))). This can be found by re-writing the equation as 2^x + 2^(x^(-2)-1) = 3 and then approximating 2^x as a constant near x=-2/3

  • @dianeweiss4562
    @dianeweiss4562 2 ปีที่แล้ว +1

    I saw the positive answer immediately just looking at the problem.

  • @orchestra2603
    @orchestra2603 2 ปีที่แล้ว

    The thing with AM-GM was really cool. Never ever would I arrive at it myself :) I just analyzed functions f1(x) = 2^{x+1} and f2(x)=2^{1/x^2} (so that f(x) = f1(x) + f2(x)) separately for x>0. For x near 0, f approaches plus infinity like f2 (f1 simply approaches just a constant 2). So, just arround zero we have a monotonically decreasing function with negative derivative. For somewhat large positive x (x->+oo), f2 is negligible (appoaches just a constant 1), and the global behaviour is fully determined by the f1. So, somewhat remote from zero, f is monotonically increasing with positive derivative. So, there must be a point (say, x*) within (0,+oo), where derivative is zero, and because of these "local" monotonicities, this point can be only one. Then, the values of f(x) within that range will be from f(x*) up to +oo. There can be possibly three scenarios. If f(x*) > 6, we cannot have any real roots in that range. So, 0 positive roots. Imagine... Upon moving from x=0 to large x's, we are descending from infinity to f(x*) and then bouncing back up to the infinity never reaching 6. If f(x*)

  • @SuperYoonHo
    @SuperYoonHo 2 ปีที่แล้ว +1

    Thanks so much!

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว +1

      You bet!

    • @SuperYoonHo
      @SuperYoonHo 2 ปีที่แล้ว +1

      @@SyberMath 🙏🙏

  • @ИльхамАбдуллаев-ь6й
    @ИльхамАбдуллаев-ь6й 2 ปีที่แล้ว

    Very Graceful And Informative Video .Thank you Syber Math for your original and interesting ways of solving problems.Bravoo👏👏👏

    • @SyberMath
      @SyberMath  2 ปีที่แล้ว +1

      Np! Thank you! 😍

  • @OmerOruc-j6o
    @OmerOruc-j6o ปีที่แล้ว

    thank you .very nice

  • @samuelmarger9031
    @samuelmarger9031 2 ปีที่แล้ว +1

    That's a great insight to the problem!
    You didn't draw the smiley face, though... I miss that.

  • @moeberry8226
    @moeberry8226 2 ปีที่แล้ว

    I solved it for both solutions by using calculus to graph it and end behavior along with domain restriction aka x cannot equal 0. And then showed there’s only two solutions.

  • @mega_mango
    @mega_mango 2 ปีที่แล้ว +3

    Gide how to solve problems like this:
    1. Try to do it with a cases 0, 1, 2
    2. With probability 99% you are found an answer
    :)

    • @jpolowin0
      @jpolowin0 2 ปีที่แล้ว

      The "x=1" was by inspection, but I couldn't figure out easily if there might be other solutions.

  • @MYBootlegScene
    @MYBootlegScene 2 ปีที่แล้ว +1

    Shouldn't it be 2^x.2 + 2^(1/x^2) in the first line?

  • @mariomestre7490
    @mariomestre7490 2 ปีที่แล้ว

    Genial la manera original de resoldrr aixœ

  • @christopherellis2663
    @christopherellis2663 2 ปีที่แล้ว +2

    I could see it from the start.

    • @welcomingnormie6475
      @welcomingnormie6475 2 ปีที่แล้ว

      such equations do have a tendency to have a very guessable root

  • @somasahu1234
    @somasahu1234 2 ปีที่แล้ว +2

    For the second am gm x has to be positive

  • @VuAilleurs
    @VuAilleurs 2 ปีที่แล้ว

    Nice one

  • @MrLidless
    @MrLidless ปีที่แล้ว

    x = 1 is an obvious solution. Take the RHS to the LHS and differentiate, it’s always positive, ie unique solution.

  • @nicolascamargo8339
    @nicolascamargo8339 ปีที่แล้ว

    Wow

  • @rakenzarnsworld2
    @rakenzarnsworld2 2 ปีที่แล้ว

    x = 1

  • @ojasdeshpande7296
    @ojasdeshpande7296 2 ปีที่แล้ว

    Of course x=0 duh

  • @antidemotivation5773
    @antidemotivation5773 2 ปีที่แล้ว +1

    Fantastic Maths
    Give me heart and pin please

  • @ganda3454
    @ganda3454 2 ปีที่แล้ว

    x=1