a wonderfully natural doubly infinite product

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ธ.ค. 2024

ความคิดเห็น • 35

  • @cdkw2
    @cdkw2 5 หลายเดือนก่อน +48

    Day 1 of waiting for another backflip transition

    • @xinpingdonohoe3978
      @xinpingdonohoe3978 5 หลายเดือนก่อน +5

      Day 1? Wait, was there one yesterday?

    • @cdkw2
      @cdkw2 5 หลายเดือนก่อน

      @@xinpingdonohoe3978 no

    • @farfa2937
      @farfa2937 5 หลายเดือนก่อน

      @@xinpingdonohoe3978 Maybe he just started waiting today (yesterday actually).

    • @cameronbigley7483
      @cameronbigley7483 5 หลายเดือนก่อน

      ​@@xinpingdonohoe3978Could've just started waiting.

  • @sorion1238
    @sorion1238 4 หลายเดือนก่อน +1

    really great video, I love problems like this and the way your explaining it

  • @farfa2937
    @farfa2937 5 หลายเดือนก่อน +6

    I’d have written it as log base b of a at the end, for aesthetics.

  • @romain.guillaume
    @romain.guillaume 5 หลายเดือนก่อน +5

    Finally a math video where I had the good idea. Looking at the powers I told myself that this product produce exactly one occurrence of each power because choosing the 1 or the power of X is literally the same as choosing a 0 or a 1 for the binary representation of the exponent.

  • @jay_sensz
    @jay_sensz 5 หลายเดือนก่อน +14

    The formula in the thumbnail is not the same as the one in the problem (minus signs where there should be plus signs).

  • @richardfarrer5616
    @richardfarrer5616 5 หลายเดือนก่อน +2

    For the lemma, note that (1-x)( partial product up to N) = (1 - x^(2^(N+1)). This is easy to prove by induction using the difference of two squares formula. So limit (1-x)(partial product) = 1.

  • @goodplacetostop2973
    @goodplacetostop2973 5 หลายเดือนก่อน +19

    13:59

    • @maxhagenauer24
      @maxhagenauer24 5 หลายเดือนก่อน

      For me the video is exactly 14 minutes long so at least you gave him a second.

  • @jay_sensz
    @jay_sensz 5 หลายเดือนก่อน +13

    Does this actually provide a usable approximation to calculate ln(a)/ln(b) = log_b(a)?
    Edit: I tested it and it seems to give results accurate to 15 digits for the partial product over [-50 ≤ n ≤ 50] using 64-bit floating point arithmetic.

    • @MooImABunny
      @MooImABunny 5 หลายเดือนก่อน +3

      it probably converges quite slowly

    • @zachariastsampasidis8880
      @zachariastsampasidis8880 5 หลายเดือนก่อน +1

      No because it's a double infinite product

    • @jay_sensz
      @jay_sensz 5 หลายเดือนก่อน

      @@zachariastsampasidis8880 Why would that be a problem? You can easily rewrite it as a single infinite product.

    • @demenion3521
      @demenion3521 5 หลายเดือนก่อน +8

      infinite product representations typically converge extremely slowly compared to series representations

    • @MooImABunny
      @MooImABunny 5 หลายเดือนก่อน +1

      i did some thinking. First of all, the positive part of the product doesn't really help us, it just limits us to |a|,|b| < 1, we're better off taking n from -∞ to -1 and dealing multiplying by a factor of (1-a)/(1-b).
      Now, taking n from -N to -1 gives us the expression
      (a^2^-N - 1)/(b^2^-N - 1).
      Consider (a^u - 1)/(b^u - 1).
      If we take u to be small, we can do a little Taylor series
      (a^u - 1)/(b^u - 1)
      ≈ ln(a)/ln(b) + ½u ln(a)[ln(a)/ln(b) - 1] + O(u²)
      The error is linear in u. If u = 2^-N, the error falls off pretty quickly.
      btw, I thought, if we want to compute ln(a)/ln(b), we might as well skip the product and just compute (a^u-1)/(b^u-1) for some small u. The issue then is numerical stability, computing an expression that is like 0.0000(...)/0.0000(...)
      The product formula doesn't have this issue because we're computing terms like 2.000(...)/2.000(...).
      But that's not the real problem.
      The biggest issue is that to compute x^2^-n means we're taking iterative square roots at each step, which isn't cheap!
      In conclusion: don't.

  • @Generalist18
    @Generalist18 5 หลายเดือนก่อน +2

    Hey Michael could I suggest a problem imo 1990 problem 3

  • @jafecc
    @jafecc หลายเดือนก่อน

    The correct answer is also log_b(a).

  • @pedroalonso7606
    @pedroalonso7606 5 หลายเดือนก่อน +2

    13:46 Why is it important a,b are in (0,1) here? I mean, if a or b were >1 their limit as u approaches zero would be one too.

    • @benardolivier6624
      @benardolivier6624 5 หลายเดือนก่อน +5

      Otherwise the product diverges (unless b=a which is trivially equal to 1) since it uses (1-b^2^n)/(1-a^2^n) which is equivalent to (b/a)^2^n when n is large.

    • @pedroalonso7606
      @pedroalonso7606 5 หลายเดือนก่อน

      ​@@benardolivier6624 Oh! Now I see...Thanks.

    • @jay_sensz
      @jay_sensz 5 หลายเดือนก่อน +2

      @@pedroalonso7606 it's also really easy to make it work with values for a and b greater than 1. Simply replace a with 1/a and/or b with 1/b and multiply a factor of -1 on top of the result for each inverse you take.

  • @jyfortin
    @jyfortin 5 หลายเดือนก่อน +3

    It's a "telescopic" product: multiply the product by 1-x, you get (1-x)(1+x)=1-x^2, then (1-x^2)(1+x^2)=1-x^4, etc.. Otherwise it's more correct to write the intervals (-1,1) as ]-1,1[.

    • @themathhatter5290
      @themathhatter5290 5 หลายเดือนก่อน

      In what world are round brackets equal to reversed square brackets. Are you Bourbakian.

    • @BrianGriffin83
      @BrianGriffin83 5 หลายเดือนก่อน +1

      @@themathhatter5290 in French world

    • @bjornfeuerbacher5514
      @bjornfeuerbacher5514 5 หลายเดือนก่อน

      @@themathhatter5290 Writing reversed square brackets instead of the round parentheses for open intervals is common practice in all German schools I know about. Strangely, in German universities, the round parentheses are used instead.

    • @jyfortin
      @jyfortin 5 หลายเดือนก่อน +2

      It is less confusing, at least for me, because the notation (a,b) is usually reserved for a set of coordinates or objects. And when people write for example (a,b] it is quite awkward.. For real numbers it is easy to see that ]a,b] is an interval with a excluded and b included. And for what you call integers (positive or negative) it is common to write with a different notation |[ or ]| but with the same meaning

  • @user-SK22-calc
    @user-SK22-calc 5 หลายเดือนก่อน

    Have you heard of cyclic sums and products?

  • @pierreabbat6157
    @pierreabbat6157 5 หลายเดือนก่อน +1

    Can you take the limit as Euler goes to St. Petersburg?