A tricky Mathematics Question from Oxford University Admission Exam

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 พ.ย. 2024

ความคิดเห็น • 10

  • @key_board_x
    @key_board_x 4 วันที่ผ่านมา +1

    x³ = i ← this is a complex number
    The modulus of x³ is: m = √(0² + 1²) = 1, so the modulus of x is: m^(1/3) = 1^(1/3) = 1
    The argument of x³ is: β = π/2, so the argument of x is (β/3) = (π/2)/3 = π/6
    …therefore the first root of x³ is:
    x1 = 1.[cos(π/6) + i.sin(π/6)] → then we add (2π/3) to get the second root
    x2 = 1.[cos{(π/6) + (2π/3)} + i.sin{(π/6) + (2π/3)}] → and we add (2π/3) more to get the third root
    x3 = 1.[cos{(π/6) + (2π/3) + (2π/3)} + i.sin{(π/6) + (2π/3) + (2π/3)}]
    It gives
    x1 = cos(π/6) + i.sin(π/6)
    x1 = (√3)/2 + i.(1/2)
    x1 = [(√3)/2].(1 + i)
    x2 = cos(5π/6) + i.sin(5π/6) → recall: 5π/6 = (6π - π)/6 = (6π/6) - (π/6) = π - (π/6)
    x2 = cos[π - (π/6)] + i.sin[π - (π/6)]
    x2 = - cos(π/6) + i.sin(π/6)
    x2 = - (√3)/2 + i.(1/2)
    x2 = [(√3)/2].(- 1 + i)
    x3 = cos(9π/6) + i.sin(9π/6)
    x3 = cos(3π/2) + i.sin(3π/2)
    x3 = 0 + i.(- 1)
    x3 = - i
    Summarize
    x1 = [(√3)/2].(1 + i)
    x2 = [(√3)/2].(- 1 + i)
    x3 = - i

  • @NichaelCramer
    @NichaelCramer 4 วันที่ผ่านมา +1

    Very nice. Thank you.

  • @ssalmero
    @ssalmero 2 วันที่ผ่านมา

    A better way is to use the polar form: x^3= e^î(pi/2+2npi), so x=e^i(pi/6+2npi/3), for n=0, 1, 2 are the three solutions of the equation.

  • @RyanLewis-Johnson-wq6xs
    @RyanLewis-Johnson-wq6xs 4 วันที่ผ่านมา +1

    (-i)^3=i X=(i±Sqrt[3])/2= 0.5Sqrt[3]±0.5i X=-i

  • @radupopescu9977
    @radupopescu9977 4 วันที่ผ่านมา

    (i)^(1/3) has 3 values. This values are those of x^3.

  • @viggosimonsen
    @viggosimonsen 2 วันที่ผ่านมา

    Use polar coordinates - presto!

  • @payoo_2674
    @payoo_2674 4 วันที่ผ่านมา +1

    x^3=i
    x^3=e^((1/2+2n)πi)=e^((1+4n)πi/2) n∈Z
    x=(e^((1+4n)πi/2))^(1/3)
    x=e^((1+4n)πi/6)
    for n=0: x₁ = e^(πi/6) = cos(π/6)+i∙sin(π/6)) = √3/2+(1/2)i = (√3+i)/2
    for n=1: x₂ = e^(5πi/6) = cos(5π/6)+i∙sin(5π/6)) = -√3/2+(1/2)i = (-√3+i)/2
    for n=2: x₃ = e^(9πi/6) = cos(3π/2)+i∙sin(3π/2)) = 0+(-1)i = -i
    For the next n solutions are repeated.

  • @payoo_2674
    @payoo_2674 4 วันที่ผ่านมา +1

    x³=i
    Let x=a+bi {a,b∈R}
    (a+bi)³=i
    a³+3a²bi+3ab²i²+b³i³=i
    a³-3ab²+(3a²b-b³)i=0+i → a³-3ab²=0 ① and 3a²b-b³=1 ②
    ① → a(a²-3b²)=0 → a(a-b√3)(a+b√3)=0 → a=0 or a=b√3 or a=-b√3
    if a=0, than from ② -b³=1 → b=-1 → x₁=0+(-1)i=-i
    if a=b√3, than from ② 9b³-b³=1 → 8b³=1 → b³=1/8 → b=1/2 → a=√3/2 → x₂=√3/2+(1/2)i=(√3+i)/2
    if a=-b√3, than from ② 9b³-b³=1 → 8b³=1 → b³=1/8 → b=1/2 → a=-√3/2 → x₃=-√3/2+(1/2)i=(-√3+i)/2

  • @nikolayplatnov5148
    @nikolayplatnov5148 4 วันที่ผ่านมา

    Kidding ? i= exp (i(pi/2+2 pi N)).
    X= exp (i(pi/6+2/3 pi N))