Douglas Zhou: Reverse engineering structural connectivity in brain networks

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ก.ย. 2024
  • Understanding causal connectivity within a network is crucial for deciphering its functional dynamics. However, the causal connections inferred are fundamentally influenced by the choice of causality measure, which may not always correspond to the network's actual structural connectivity. The relationship between causal and structural connectivity, particularly how different causality measures influence the inferred causal links, warrants further exploration. In this talk, we first theoretically establish a mapping between structural and causal connectivity based on voltage signals of simulated Hodgkin-Huxley and integrate-and-fire neuronal networks. In order to extend our results to practical cases, we then examine nonlinear networks with pulse signal outputs, such as spiking neural networks, employing four prevalent causality measures: time-delayed correlation coefficient, time-delayed mutual information, Granger causality, and transfer entropy in the sense of pairwise treatment. We conduct a theoretical analysis to elucidate the interconnections among these measures when applied to pulse signals. Through case studies involving both a simulated Hodgkin-Huxley network and an empirical mouse brain network, we validate the quantitative relationships between these causality measures. Our findings demonstrate a strong correspondence between the causal connectivity derived from these measures and the actual structural connectivity, thus establishing a direct link between them. We underscore that structural connectivity in networks with pulse outputs can be reconstructed pairwise, circumventing the need for global information from all network nodes and effectively avoiding the curse of dimensionality. Our approach provides a robust and practical methodology for reconstructing networks based on pulse outputs, offering significant implications for understanding and mapping neural circuitry.

ความคิดเห็น •