Can you calculate area of the Pink shaded semicircle? | (Olympiad) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ก.พ. 2025

ความคิดเห็น •

  • @jamestalbott4499
    @jamestalbott4499 3 ชั่วโมงที่ผ่านมา +1

    Thank you!

    • @PreMath
      @PreMath  20 นาทีที่ผ่านมา

      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @AzouzNacir
    @AzouzNacir 7 ชั่วโมงที่ผ่านมา +5

    Let E and F be the points of intersection of the line PQ with the complete circle. We have PE*PF=PC*PD. Since QE²=QA*QB=1*2=2, then QE=√2. From this we find (√2-r)*(√2+r)=r². Therefore, r=1. From this, the shaded area is equal to π*1²/2=π/2.

    • @phungpham1725
      @phungpham1725 6 ชั่วโมงที่ผ่านมา +1

      Thank you! I solved it almost the same as you!😅😅😅

    • @PreMath
      @PreMath  19 นาทีที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️🙏

  • @johnvriezen4696
    @johnvriezen4696 4 ชั่วโมงที่ผ่านมา +1

    You can clearly see the pink area appears to be a half of a pie. That's why the answer is 1/2π.

    • @PreMath
      @PreMath  16 นาทีที่ผ่านมา

      Thanks for the feedback ❤️🙏

  • @marioalb9726
    @marioalb9726 7 ชั่วโมงที่ผ่านมา +3

    R= ½(2+1) = 1,5 cm
    Pytagorean theorem, twice:
    R² - r² = r² + (R-1)²
    2r² = R² - (R-1)² = 1,5² - 0,5² = 2
    r² = 1
    A = ½πr² = π/2 cm² ( Solved √ )

    • @PreMath
      @PreMath  18 นาทีที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️🙏

  • @wackojacko3962
    @wackojacko3962 5 ชั่วโมงที่ผ่านมา

    @ 7:11 , ... when all are one and one is all 😊

  • @michaelkouzmin281
    @michaelkouzmin281 5 ชั่วโมงที่ผ่านมา +1

    Just one more solution:
    1. Let us draw 2 auxiliary lines: vertical (perpendicular to AB) pathing through Q, It will intersect with large circle at point F and let us conect O and F.
    2. Let y= PF, r= CP, then QF = r+y;
    3. AB = 1+2 =3; R=3/2;
    4. OQ = R-1 = 3/2 -1 = 1/2;
    5. Let us consider right tringle OQF : R^2 = OQ^2+ QF^2 => (3/2)^2 = (1/2)^2 + (r+y)^2 (1)
    6. Let us apply intersecting chords theorem (chords CD & FQ... and down to intersection.): (r+y+r)*y = r^2 => (2ry+y^2) = r^2 (2)
    7. We have got a system of equations : {(1)and(2)}
    let us expand (1):
    9/4 = 1/4 + r^2 + (2ry + y^2) (3)
    Let us put (2) into (3)
    8/4 = r^2+r^2;
    2r^2 = 8/4
    r^2 = 1;
    8. A(pink) = pi*r^2/2 = pi*1/2 = pi/2 sq units.

    • @PreMath
      @PreMath  16 นาทีที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️🙏

  • @soli9mana-soli4953
    @soli9mana-soli4953 2 นาทีที่ผ่านมา

    Once known that radius =3/2 and OQ=1/2, set OP=x
    1) tangent secant theorem from O
    (X+r)*(x-r)=(1/2)^2
    r^2 -x^2 +1/4=0
    2) intersecting chords th.
    (3/2+x)*(3/2-x)=r*r
    r^2+x^2-9/4=0
    Summing 1)+2)
    2r - 8/4=0
    r=1
    Area=pi/2

  • @marioalb9726
    @marioalb9726 5 ชั่วโมงที่ผ่านมา +1

    Intersecting chords theorem, over point Q:
    h² = 2*1. ---> h =√2 cm
    Intersecting chords theorem, over point P:
    r² = (h+r)(h-r)
    r² = h² - 2hr - r² = (√2)² - 2√2r - r²
    2r² + 2√2r -2 = 0
    r² + √2r - 1 = 0 --> r= 1 cm
    Area of pink semicircle:
    A = ½πr² = π/2 cm² ( Solved √)

    • @PreMath
      @PreMath  17 นาทีที่ผ่านมา

      Thanks for the feedback ❤️🙏

  • @cyruschang1904
    @cyruschang1904 2 ชั่วโมงที่ผ่านมา +1

    (1.5)^2 - r^2 - r^2 = (0.5)^2
    r^2 = 1
    Pink area = π/2

    • @PreMath
      @PreMath  20 นาทีที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️🙏

    • @cyruschang1904
      @cyruschang1904 16 นาทีที่ผ่านมา

      @ Thank you 😊

  • @AmirgabYT2185
    @AmirgabYT2185 7 ชั่วโมงที่ผ่านมา +2

    S=π/2≈1,571≈1,57

    • @PreMath
      @PreMath  18 นาทีที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️🙏

  • @alexundre8745
    @alexundre8745 6 ชั่วโมงที่ผ่านมา +1

    Bom dia Mestre
    Respeitosamente desejo-lhe um domingo abençoado
    Grato pelas aulas.

    • @PreMath
      @PreMath  19 นาทีที่ผ่านมา

      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @marcgriselhubert3915
    @marcgriselhubert3915 7 ชั่วโมงที่ผ่านมา +1

    Very good. However I propose an analytic solution (which is less elegant, I know):
    We use an orthonormal center O and first axis (OB). The radius of the big semi circle is 3/2 and its equation is x^2 + y^2 = 9/4.
    Point P has same abscissa than point Q: -1/2, so P(-1/2; p) with p unknown positive real which is the radius of the small semi circle.
    The equation of this small semi circle is (x+(1/2))^2 + (y-p)^2 = p^2 or x^2 + y^2 +x -2.p.y +1/4 = 0. At the intersection of the two semi circles we have:
    9/4 +x -2.p.y +1/4 = 0 or x = 2.p.y -5/2. We replace x by this value in the equation of the big semi circle to obtain the ordinates of the points C and D:
    (2.p.y -5/2)^2 + y^2 = 9/4 or (4.(p^2)+1).(y^2) -10.p.y +4 = 0. The half sum of these ordinates is (5.p) / (4.(p^2)+1) and is also is p which is the ordinate of P as P is the middle of [C, D], so we have 5 / 4.((p^2)+1) = 1 which gives p = 1. So the radius of the small circle is 1 and the area we are looking for id Pi/2.

    • @PreMath
      @PreMath  19 นาทีที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️🙏

  • @santiagoarosam430
    @santiagoarosam430 7 ชั่วโมงที่ผ่านมา +1

    La alineación PQ corta a la circunferencia por arriba en E y por abajo en F ; CP=PD=PQ=r ; OA=OB=OF=(1+2)/2=3/2 ; OQ=(3/2)-1=1/2---> QF=√(3/2)²-(1/2)²=√2 ---> Potencia de P respecto a la circunferencia =r²=(√2 +r)*(√2 -r)---> r=1---> Área del semicírculo rosa =π/2.
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  19 นาทีที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️🙏

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho ชั่วโมงที่ผ่านมา +1

    MY RESOLUTION PROPOSAL :
    01) PO^2 = (3 / 2)^2 - r^2
    02) PO^2 = r^2 + (1 / 2)^2
    03) (9 / 4) - r^2 = r^2 + (1 / 4)
    04) 2r^2 = (9 / 4) - (1 / 4)
    05) 2r^2 = 8 / 4
    06) 2r^2 = 2
    07) r^2 = 1
    08) r = 1
    09) Pink Semicircle Area (PSA) = (r^2 * Pi) / 2
    10) PSA = (Pi / 2) sq un
    11) PSA ~ 1,571 sq un
    MY BEST ANSWER :
    The Pink Semicircle Area is equal to (Pi/2) Square Units, or approx. equal to 1,571 Square Units.

    • @PreMath
      @PreMath  21 นาทีที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️🙏

  • @louisdsouza6976
    @louisdsouza6976 6 ชั่วโมงที่ผ่านมา

    You are too fast , we have are having our .note books.and noting down, nefore we copy you have changed.
    Please put in methodlogy of teaching, you are wasting youf time and the time of U tube watchers

    • @PreMath
      @PreMath  20 นาทีที่ผ่านมา

      Thanks for the feedback ❤️🙏

  • @unknownidentity2846
    @unknownidentity2846 7 ชั่วโมงที่ผ่านมา +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let R be the radius of the white semicircle and let r be the radius of the pink semicircle. Since Q is the point of tangency, we know that the triangle OPQ is a right triangle. Therefore we can apply the Pythagorean theorem:
    OQ² + PQ² = OP²
    OQ² + r² = OP²
    The triangle OCD is an isosceles triangle (OC=OD=R). Since P is the midpoint of CD, the triangles OPC and OPD are congruent right triangles. So we can apply the Pythagorean theorem again:
    OC² = OP² + PC²
    R² = OP² + r²
    ⇒ OP² = R² − r²
    By combining these two equations we obtain:
    OQ² + r² = OP² = R² − r²
    2r² = R² − OQ²
    r² = (R² − OQ²)/2
    Now we are able to calculate the area of the pink semicircle:
    R = AB/2 = (AQ + BQ)/2 = (1 + 2)/2 = 3/2
    OQ = OA − AQ = r − AQ = 3/2 − 1 = 1/2
    r² = (R² − OQ²)/2 = [(3/2)² − (1/2)²]/2 = (9/4 − 1/4)/2 = (8/4)/2 = 2/2 = 1
    ⇒ A = πr²/2 = π*1²/2 = π/2
    Best regards from Germany

    • @PreMath
      @PreMath  17 นาทีที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️🙏