Can you calculate the Green circle Radius? | (Rectangle) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 18 ม.ค. 2025
  • Learn how to find the Green circle Radius. Important Geometry and Algebra skills are also explained: Pythagorean theorem; circle theorem. Step-by-step tutorial by PreMath.com.
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you calculate the ...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you calculate the Green circle Radius? | (Rectangle) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindRadius #GreenCircle #Circle #CircleTheorem #GeometryMath #PythagoreanTheorem
    #MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

ความคิดเห็น • 40

  • @LawtonDigital
    @LawtonDigital 5 ชั่วโมงที่ผ่านมา +1

    Thank you! These puzzles are so much more fun than Sudoku.

    • @PreMath
      @PreMath  4 ชั่วโมงที่ผ่านมา

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @AzouzNacir
    @AzouzNacir 14 ชั่วโมงที่ผ่านมา +5

    Let a be the distance between the points of contact of the circle with radius 6 and the circle with radius r with the length of the rectangle, then we get the equations (6+r)²=a²+(6-r)², (3+r)²=(6√6-a)²+(9-r)². Solving these two equations, we geta=4√6 ,r=4.

    • @PreMath
      @PreMath  9 ชั่วโมงที่ผ่านมา

      Excellent!
      Thanks for sharing ❤

  • @johnbrennan3372
    @johnbrennan3372 13 ชั่วโมงที่ผ่านมา +1

    Very nice question and solution.

    • @PreMath
      @PreMath  9 ชั่วโมงที่ผ่านมา

      Glad to hear that!
      Thanks for the feedback ❤

  • @alanthayer8797
    @alanthayer8797 4 ชั่วโมงที่ผ่านมา

    NICE multiple break downs ! Like these xtra challenging types sir ! Thanku

  • @cyruschang1904
    @cyruschang1904 10 ชั่วโมงที่ผ่านมา +1

    6√6 = √[(6 + r)^2 - (6 - r)^2] + √[(3 + r)^2 - (9 - r)^2] = √(24r)+ √(24r - 72)
    3 = √(r)+ √(r - 3)
    9 - 6√(r) + r = r - 3
    r = 4

    • @PreMath
      @PreMath  9 ชั่วโมงที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤

    • @cyruschang1904
      @cyruschang1904 6 ชั่วโมงที่ผ่านมา

      @@PreMath Thank YOU 😊

  • @jamestalbott4499
    @jamestalbott4499 9 ชั่วโมงที่ผ่านมา +1

    Nice! Using our constant friend, the Pythagorean theorem, redefining two variables into a common variable and solving. Great problem for a Saturday.

    • @PreMath
      @PreMath  9 ชั่วโมงที่ผ่านมา

      Excellent!
      Glad to hear that!
      Thanks for the feedback ❤

  • @zupitoxyt
    @zupitoxyt 12 ชั่วโมงที่ผ่านมา +2

    What an incredible job 👏. Nice question sir 😊

    • @PreMath
      @PreMath  9 ชั่วโมงที่ผ่านมา

      Glad to hear that!
      Thanks for the feedback ❤

  • @wackojacko3962
    @wackojacko3962 10 ชั่วโมงที่ผ่านมา +1

    @ 10:53 the intense ping pong of math begins. First we square...then take square root to find x ... then square root to find y ... then square to find r ... I'm having a coffee and donut this morning and can't the difference between 'em. I better go back to bed. 😊

    • @PreMath
      @PreMath  9 ชั่วโมงที่ผ่านมา

      😀Thanks for the feedback ❤

  • @uwelinzbauer3973
    @uwelinzbauer3973 12 ชั่วโมงที่ผ่านมา +1

    Hallo!
    I was afraid that we would have to deal with biquadratic or quartic equations and expressions longer than a sheet of paper, but all the difficult things canceled out.
    Thanks for sharing this nice geometry question!
    Best wishes ❤️

    • @PreMath
      @PreMath  8 ชั่วโมงที่ผ่านมา

      Excellent!
      You are very welcome!
      Thanks for the feedback ❤

  • @alexundre8745
    @alexundre8745 15 ชั่วโมงที่ผ่านมา +1

    Bom dia Mestre
    Obrigado pela aula
    Desejo-lhe um sábado abençoado

    • @PreMath
      @PreMath  9 ชั่วโมงที่ผ่านมา

      Glad to hear that!
      You are very welcome!
      Thanks dear❤
      Stay blessed ❤🙏

  • @AmirgabYT2185
    @AmirgabYT2185 15 ชั่วโมงที่ผ่านมา +3

    r=4 units 🔥

    • @PreMath
      @PreMath  9 ชั่วโมงที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤

  • @kimchee94112
    @kimchee94112 9 ชั่วโมงที่ผ่านมา +1

    It's hard to see how the manipulation ends up correct. You could start in a different paths and ended up nowhere multiple times like many problems. It's not the math manipulation/mechanics. It's the thought process and visualization that are more important driving the math manipulation. If you don't have a clear thought process you could try this and try that until you ended up with the correct answer. Excellent video once again.

    • @PreMath
      @PreMath  8 ชั่วโมงที่ผ่านมา

      Well said!👍
      Thanks for the feedback ❤

  • @claytonrumley
    @claytonrumley 7 ชั่วโมงที่ผ่านมา +1

    Very elegant.

    • @PreMath
      @PreMath  6 ชั่วโมงที่ผ่านมา +1

      Glad you think so!
      Thanks for the feedback ❤️

  • @rey-dq3nx
    @rey-dq3nx 8 ชั่วโมงที่ผ่านมา +1

    x=√((3+r)²-(9-r)²)
    x=√(9+6r+r²-81+18r-r²)
    x=√(24r-72)
    y=√(6+r)²-(6-r)²
    y=√36+12r+r²-36+12r-r²
    y=√24r
    9+6√6=3+6+√(24r-72)+√24r
    6√6=√(24r-72)+√24r
    6√6=2√6√(r-3)+2√6√r
    3=√(r-3)+√r
    (3-√r)² = (√(r-3)²
    9-6√r+r=r-3
    12=6√r
    r=4

    • @PreMath
      @PreMath  6 ชั่วโมงที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @angeluomo
    @angeluomo 4 ชั่วโมงที่ผ่านมา

    I was completely with you until 11:13, but then you went down a rabbit hole of complicated algebra and substitution. How about this? y^2=24r and x^2=24r-72. How elegant! So x^2=y^2-72, and y=6*sqrt6-x. Squaring y gives you y^2=216-12*sqrt6*x+x^2. Plug that into the equation and simplify: x=12/sqrt6. Stick this value for x into your equation 2, and you get r=4. Much simpler. The value of y is conveniently 24/sqrt6.

    • @PreMath
      @PreMath  4 ชั่วโมงที่ผ่านมา

      Thanks for the feedback ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 14 ชั่วโมงที่ผ่านมา

    We use an orthonormal center K and first axis (KB), we have Q(0; 3) O(6.sqrt(6); 6) P(a; 12-r) with r the radius of the green circle.
    *We have VectorQP(a, 9- r) and QP^2 = (a^2) + (81-18.r+(r^2)), but also QP^2 = (r+3)^2 = (r^2)+ 6.r +9, so (a^2) +81 -18.r +(r^2) = (r^2) + 6.r +9;
    We simplify and get: (a^2) -24.r + 72 = 0 (Eq1)
    *We also have VectorOP(a -6.sqrt(6); 6 -r) and OP^2 = (a^2) -12.sqrt(6).a + 216 +36 -12.r +(r^2). = (a^2) -12.sqrt(6).a - 12.r +(r^2) +252, but also OP^2 = (r +6)^2
    = (r^2) + 12.r +36, so (a^2) -12.sqrt(6).a -12.r +(r^2) + 252 = (r^2) +12.r + 36. We simplify and get: (a^2) -12.sqrt(6).a -24.r + 216 = 0 (Eq2)
    *In (Eq2) we replace (a^2) -24.r +72 by 0 (which is given y (Eq1)) and get: -12.sqrt(6).a + 144 = 0 and then a = 144/(12.sqrt(6)) = 12/sqrt(6)
    We replace a by this value in (Eq1) and get: 24.r = ((12/sqrt(6))^2 - 72 = (144/6) - 72 = 96, so finally r = 96/24 = 4.

    • @PreMath
      @PreMath  8 ชั่วโมงที่ผ่านมา

      Thanks for the feedback ❤

  • @johnbrennan3372
    @johnbrennan3372 9 ชั่วโมงที่ผ่านมา

    Another way to do it is to let x=(6root6)-y etc.

    • @PreMath
      @PreMath  8 ชั่วโมงที่ผ่านมา

      Thanks for the feedback ❤

  • @unknownidentity2846
    @unknownidentity2846 14 ชั่วโมงที่ผ่านมา +1

    Let's find the radius:
    .
    ..
    ...
    ....
    .....
    First of all we calculate the second side length of the rectangle:
    AD = BC = 2*R(big white circle) = 2*6 = 12
    Now let's add points R and S such that OPR and PQS are right triangles. In this case P, R and S are located on the same line. By applying the Pythagorean theorem we obtain:
    OP² = PR² + OR²
    PQ² = PS² + QS²
    The green circle has exactly one point of intersection with the big white circle and it has exactly one point of intersection with the small white circle. So we obtain:
    OP = R(green circle) + R(big white circle) = R + 6
    PQ = R(green circle) + R(small white circle) = R + 3
    From the given diagram we can conclude:
    PR = AD − R − 6 = 12 − R − 6 = 6 − R
    PS = AD − R − 3 = 12 − R − 3 = 9 − R
    OR + QS = AB − 3 − 6 = 9 + 6√6 − 3 − 6 = 6√6 ⇒ QS = (6√6 − OR)
    So we finally obtain:
    OP² = PR² + OR²
    PQ² = PS² + QS²
    (R + 6)² = (6 − R)² + OR²
    (R + 3)² = (9 − R)² + (6√6 − OR)²
    R² + 12R + 36 = 36 − 12R + R² + OR²
    R² + 6R + 9 = 81 − 18R + R² + 216 − (12√6)*OR + OR²
    24R = OR²
    24R = 288 − (12√6)*OR + OR²
    OR² = 288 − (12√6)*OR + OR²
    (12√6)*OR = 288
    ⇒ OR = 288/(12√6) = 24/√6 = 4*6/√6 = 4√6
    ⇒ OR² = (4√6)² = 96
    24R = OR² = 96
    ⇒ R = 96/24 = 4
    Best regards from Germany

    • @PreMath
      @PreMath  8 ชั่วโมงที่ผ่านมา

      Excellent!
      Thanks for sharing ❤

  • @CLMN284
    @CLMN284 15 ชั่วโมงที่ผ่านมา +3

    First

    • @PreMath
      @PreMath  8 ชั่วโมงที่ผ่านมา

      Excellent!
      Thanks ❤

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 5 ชั่วโมงที่ผ่านมา +1

    MY RESOLUTION PROPOSAL :
    01) AD = BC = (2 * 6) = 12 lin un
    02) Draw 2 Horizontal Lines and 2 Vertical Lines, passing by Point Q and Point O.
    03) The Horizontal Distance between these two Vertical Lines is equal to (6sqrt(6)) lin un; (3 + 6) - (9 + 6sqrt(6)) = 9 - 9 + 6sqrt(6) = 6sqrt(6)
    04) Now I have 2 Different Right Triangles.
    05) Let the Radius of the Green Circle equal to X lin un.
    06) Divide 6sqrt(6) in two Different Parts : 1) Y and 2) (6sqrt(6) - Y)
    07) Using the Pythagorean Theorem I have :
    08) (X + 3)^2 = (9 - X)^2 + Y^2. Note that (9 - X) = (12 - 3 - X)
    09) (6 + X)^2 = (6 - X) + (6sqrt(6) - Y)^2
    10) Now I have a System of 2 Nonlinear Equations with 2 Unknows
    11) Solutions :
    12) X = 4 lin un and Y = 2sqrt(6) lin un
    Therefore,
    MY BEST ANSWER IS :
    The Radius of the Green Circle is equal to 4 Linear Units.

    • @PreMath
      @PreMath  4 ชั่วโมงที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️