Can you find area of the Green shaded region? | (Quarter Circle) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025

ความคิดเห็น • 55

  • @alanthayer8797
    @alanthayer8797 วันที่ผ่านมา +1

    NICE simplification! Thanku for daily content sir ! U consistently doin different problems is cool

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent! Glad you are enjoying the channel. ❤️
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @AzouzNacir
    @AzouzNacir วันที่ผ่านมา +4

    We complete the circle and call E and F as the intersection points of CD and BD, respectively, with the circle. We have DC*DE=DB*DF, from which 5*5=3*(2R-3), so R=17/3, and from which the required area is equal to π*((17/3)²)/4-(17/3)²/2=(289π)/36-(289/18).

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Thanks for your detailed solution! 👍🙏

  • @zupitoxyt
    @zupitoxyt วันที่ผ่านมา +3

    Daily challenges are unique. We got epic teacher❤

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Glad to hear that!
      Thanks for the feedback ❤️🙏

  • @RK-tf8pq
    @RK-tf8pq วันที่ผ่านมา +1

    We extend BO by another radius distance downwards, to intersect the semi-circle at a point E. Thus angle BCE is 90 degrees. So BD x DE = square of CD. Thus 3 x (2r -3) = 25. So 6r - 9 = 25. Thus r = 17/3.

  • @cyruschang1904
    @cyruschang1904 วันที่ผ่านมา +1

    r^2 = 5^2 + (r - 3)^2
    6r = 25 + 9 = 34
    r = 17/3
    Shaded area = (π/4)(r^2) - (1/2)(r^2) = (17/3)(17/3)(π - 2)/4 = (289)(π - 2)/(36)

  • @jamestalbott4499
    @jamestalbott4499 วันที่ผ่านมา +1

    Nice... I took the crazy train using the intersecting chord theorem, missing the right triangle... but all worked out in the end...

    • @waheisel
      @waheisel 22 ชั่วโมงที่ผ่านมา

      I think that's a little easier; 3*(2r-3)=25.

  • @marioalb9726
    @marioalb9726 วันที่ผ่านมา +2

    Intersecting chords theorem:
    a.b=2.(3+5) --> a = 2*8/b
    a = 16/(3√2)= 8/3 √2 cm
    Radius of quarter circle:
    c= a+b = 8/3 √2 + 3√2 = 17/3 √2 cm
    R = c/√2 = 17/3 cm
    Area of circular segment:
    A = ½R²(α-sinα) = ½R²(90°-sin90°)
    A = 9,16445 cm² ( Solved √ )

    • @michaelkouzmin281
      @michaelkouzmin281 วันที่ผ่านมา

      2 questions:
      1) where pi has gone?
      2) Is it correct to deduct sin(D90) from D90?

    • @marioalb9726
      @marioalb9726 วันที่ผ่านมา +2

      @michaelkouzmin281
      1) You know that 90°=π/2 radians. Here is "π"
      2) Formula for circular segment area, when α=90° :
      A= ½R²(α-sinα)= ½R²(π/2-1)
      A= ¼πR²-½R² = A₁-A₂ (exactly as video)
      Remember this formula of circular segment area, is very useful when α is not 90°
      Of course I didn't deduct sin90° from 90°, you can't mix angle units !!! NEVER !!!
      Everytime you see mixed units (For example "90°-sin90°"), it is only for viewing, but you have to make calculations in radians, Never mix sexagesimal degrees with sine or cosine or tangent !!!

    • @PreMath
      @PreMath  วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 วันที่ผ่านมา +3

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    The triangles ABO and BDP are similar right triangles. With r being the radius of the quarter circle we can conclude:
    BD/DP = OB/OA = r/r = 1 ⇒ BD = DP = 3 ⇒ OD = OB − BD = r − 3
    The triangle CDO is a right triangle, so we can apply the Pythagorean theorem:
    OD² + CD² = OC²
    OD² + (CP + DP)² = OC²
    (r − 3)² + (2 + 3)² = r²
    r² − 6r + 9 + 25 = r²
    34 = 6r
    ⇒ r = 34/6 = 17/3
    Now we are able to calculate the area of the green region:
    A(green) = A(quarter circle) − A(triangle ABO) = πr²/4 − (1/2)*OA*OB = πr²/4 − r²/2 = π*(17/3)²/4 − (17/3)²/2 = 289π/36 − 289/18 ≈ 9.164
    Best regards from Germany

    • @zupitoxyt
      @zupitoxyt วันที่ผ่านมา

      You r bot

    • @unknownidentity2846
      @unknownidentity2846 วันที่ผ่านมา

      @@zupitoxyt A bot does not answer.🙂

    • @zupitoxyt
      @zupitoxyt วันที่ผ่านมา +1

      @@unknownidentity2846 chat bots?
      Bro you are not getting to me . I saw your comments on every vids with full explanation and that one line in the end and all ur comments are in patterns.????👍👍

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @santiagoarosam430
    @santiagoarosam430 วันที่ผ่านมา +1

    BO=3+(r-3) ; CD=2+3=5 ; CO=r---> 5²+(r-3)²=r²---> r=17/3 ---> Área del segmento circular AB =[π(17/3)²/4]-[(17/3)²/2] =289(π-2)/36 =9,16445...u².
    Gracias y un saludo cordial.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @luigipirandello5919
    @luigipirandello5919 วันที่ผ่านมา +1

    Great. Thank you, Sir.

    • @PreMath
      @PreMath  วันที่ผ่านมา +1

      Excellent!
      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @alexundre8745
    @alexundre8745 วันที่ผ่านมา +1

    Bom dia Mestre
    Deus abençoe-o por essa obra de ensino
    Grato

    • @PreMath
      @PreMath  วันที่ผ่านมา

      You are very welcome!
      Thanks for the feedback ❤️🙏

  • @AmirgabYT2185
    @AmirgabYT2185 วันที่ผ่านมา +2

    S=289(π-2)/36≈9,17

    • @PreMath
      @PreMath  วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 วันที่ผ่านมา +1

    DP = DB due to 45deg angle.
    ODC has sides r-3, 5, and r.
    (r-3)^2 + 5^2 = r^2
    r^2 - 6r + 9 + 25 = r^2
    Simplify: 34 - 6r = 0, so r = 34/6 = 17/3.
    White triangle area = ((17/3)^2)/2 so 289/18.
    Quadrant area = (289/36)pi.
    Green area = (289/36)pi - 289/18.
    9.164 is a rough rounded solution.
    Yes, I see we went the same way with this one.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Glad to hear that!
      Thanks for sharing ❤️

  • @alexniklas8777
    @alexniklas8777 วันที่ผ่านมา +1

    BD= 3.
    (2r-3)3= 5^2; 6r= 34; r= 17/3.
    S= π×r^2/4- r^2/2=r^2/2(π/2- 1)= 9,16

    • @PreMath
      @PreMath  วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @michaelkouzmin281
    @michaelkouzmin281 วันที่ผ่านมา +1

    Just another solution:
    1. BD =3;
    2. PB = 3*sqrt(2);
    3. According to intersecting chords theorem: AP*PB = 2* (PD+CD) => AP = 2*(3+5)/(3*sqrt(2)) = 17*sqrt(2)/3;
    4. r = AB/sqrt(2) = (17*sqrt(2)/3)/sqrt(2) = 17/3;
    5. A(sectOAB) = pi*r^2/4 = 289*pi/36;
    6. A(trOAB) r^2 = 289/18;
    7. A(green) = (289/18)*(pi/2-1) = approx 9.164 sq units.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @adept7474
    @adept7474 วันที่ผ่านมา +1

    Property of intersecting chords.
    5•5=3(2r-3).r=17/3.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @zsoltszigeti758
    @zsoltszigeti758 วันที่ผ่านมา +1

    α=ACO angle
    (1) DO=r*sin α=r-3; (2) CD=r*cos α=5
    square both
    (1) => r^2*sin^2 α=r^2+9-6r
    (2)=> r^2*cos^2 α=25 => r^2*(1-sin^2 α)=25 => r^2 - r^2*sin^2 α=25
    (1)+(2) => r^2=r^2+9-6r+25 => 6r=34 => r=17/3

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 วันที่ผ่านมา +1

    Fine.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for the feedback ❤️

  • @murdock5537
    @murdock5537 วันที่ผ่านมา +1

    CD = CP + DP = 2 + 3 = 5 = DE → CE = 10; BP = 3√2; AP = k → 3 k√2 = 16 → k = 8√2/3 →
    AB = r√2 = 3√2 + k = 17√2/3 → r = 17/3 → green shaded area = (17/6)^2 (π - 2)
    𝑏𝑡𝑤: ∆ 𝑂𝐷𝐶 = 𝑝𝑦𝑡ℎ. 𝑡𝑟𝑖𝑝𝑙𝑒 = (1/3)(8 − 15 − 17)

    • @PreMath
      @PreMath  วันที่ผ่านมา +1

      Excellent!
      Thanks for sharing ❤️

  • @ОльгаСоломашенко-ь6ы
    @ОльгаСоломашенко-ь6ы วันที่ผ่านมา +1

    Достраиваем отрезок CD до хорды, а BO до диаметра. DB=3, CD=5. 3*(2r-3)=25. r=17/3.

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Excellent!
      Thanks for sharing ❤️🙏

  • @gelbkehlchen
    @gelbkehlchen วันที่ผ่านมา

    Solution:
    AOB is an isosceles, right-angled triangle, like PDB, so
    PD = 3 = BD. Then the Pythagorean theorem applies to the triangle ODC:
    OD²+CD² = OC² ⟹
    (r-3)²+5² = r² ⟹
    r²-6r+9+25 = r² |-r²+6r ⟹
    6r = 34 |/6 ⟹
    r = 34/6 = 17/3 ⟹
    Green area = quarter circle - isosceles, right-angled triangle
    = π*r²/4-r²/2 = (π/2-1)*r²/2= (π/2-1)*(17/3)²/2 ≈ 9.1645

  • @GudrunDuplanti
    @GudrunDuplanti 2 ชั่วโมงที่ผ่านมา

    Integrate and subtract the area of triangle?

  • @Badmintonforall
    @Badmintonforall วันที่ผ่านมา

    Is BD / DP = BO / OA correct ?

  • @JSSTyger
    @JSSTyger วันที่ผ่านมา

    [289/18][π/2-1]

  • @Vira20470
    @Vira20470 วันที่ผ่านมา

    What's your education qualification?

    • @PreMath
      @PreMath  วันที่ผ่านมา

      Please see the bio in "about"...

  • @drgerardhobley1599
    @drgerardhobley1599 วันที่ผ่านมา

    (PiRsq/4)-(1/2Rsq)

  • @wackojacko3962
    @wackojacko3962 วันที่ผ่านมา +1

    You know how you can mix flour eggs sugar and a few other things like chocolate and leave it sit in pan in a fridge for days, ...nothing! But put it in the oven and whalla, ... cookies! Today's problem kinda like that...😊

    • @PreMath
      @PreMath  วันที่ผ่านมา +1

      😀
      Thanks for sharing ❤️