Linear elasticity theory. Part 3. Strain tensor.

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 มิ.ย. 2024
  • This video introduces the strain tensor and its interpretation.
    Lectures created for Mechanics of Solids and Structures course at Olin College.

ความคิดเห็น • 24

  • @angelizquierdo3265
    @angelizquierdo3265 3 ปีที่แล้ว +16

    Just with that excellent explanation of the displacement vector field you deserve a like and a sub. Awesome video! Thanks a lot!

  • @ahmetozbekler
    @ahmetozbekler 3 ปีที่แล้ว +3

    Great explanation. Very clear and understandable. Thank you.

  • @eduardoschiavon5652
    @eduardoschiavon5652 3 ปีที่แล้ว +4

    Great explanation, thank you!

  • @why_are_kishore
    @why_are_kishore 2 ปีที่แล้ว +1

    best explanation on strain so far

  • @giovanniferreira802
    @giovanniferreira802 3 ปีที่แล้ว +2

    Great video! Thank you very much! =D

  • @javierramon8721
    @javierramon8721 2 ปีที่แล้ว

    Thank you this explanation was very useful!

  • @howtoscienceandmath
    @howtoscienceandmath 2 ปีที่แล้ว

    Very Awesome!

  • @omaryehia3572
    @omaryehia3572 ปีที่แล้ว

    You, sir are a legend!

  • @hamaschwa
    @hamaschwa ปีที่แล้ว

    Very helpful, thanks a lot!

  • @montyd7421
    @montyd7421 2 ปีที่แล้ว

    Nicely explained, pls do it for 3d case as well

  • @thomasvarghese4085
    @thomasvarghese4085 3 ปีที่แล้ว +1

    Tysm

  • @eduardoschiavon5652
    @eduardoschiavon5652 3 ปีที่แล้ว +1

    Mr. Storey, will you explain failure theories in this course?

  • @ICEBOY93
    @ICEBOY93 8 หลายเดือนก่อน

    저는 한국인 입니다.
    좋은 설명과 내용을 감사합니다

  • @gaiuspliniussecundus1455
    @gaiuspliniussecundus1455 ปีที่แล้ว

    What about the large deformations case? Any pointers?

  • @rudolfzhou884
    @rudolfzhou884 2 ปีที่แล้ว

    Wonderful jobs! though it takes time to relaize for me

  • @leophysics
    @leophysics 2 ปีที่แล้ว

    Sir I have doubt Under rotation d(thita)n(cap) transform like contravariant or covariant . About same axis of rotation

  • @MukitAmin
    @MukitAmin 2 ปีที่แล้ว

    Best

  • @jokerman9295
    @jokerman9295 2 ปีที่แล้ว

    11:33 should that not be the partial derivative of U with respect to x?

    • @ThePlazmapower
      @ThePlazmapower 2 ปีที่แล้ว

      yh but I'm sure it's a mistake either way d and ∂ look the same and doesn't really matter unless you're doing a degree in Mathematics

    • @jokerman9295
      @jokerman9295 2 ปีที่แล้ว

      @@ThePlazmapower No i mean it should be a partial of U with respect to x, not y. Right? Because the U vector is point right, just like he did the partial of U with respect to x in the example at 8:24.

    • @raiden5736
      @raiden5736 2 ปีที่แล้ว

      @@jokerman9295 I understand what you are asking. It is a Taylor expansion of multivariable function but you only keep linear terms (terms of power 1 in x and y) of the function U=U(x,y). You are looking for the change in U as you move along ''y'' and only ''y'' (partial U / partial y). NOTE: The expansion of U(0,dy) will produce the vector pointing AA' which point in the x direction. But you still evaluating U only from (0,0) to (0,dy), that why you use the change of ''U'' as you change ''y''. Let me know if this is clear enough, this topic are confusing and i'm glad to help. -Best Yael

    • @raiden5736
      @raiden5736 2 ปีที่แล้ว

      Just a final comment... Formally you should have this: U(0,dy)=U(0,0) + (Delta y)*(∂U/∂y )|_(0,dy) + (Delta x)*(∂U/∂x )|_(0,dy) + (higher order terms). How ever "Delta x" is just (x_A' - x_A')=(0-0)=0 so the term '' (Delta x)*(∂U/∂x )|_(0,dy) '' vanish, in addition you ignore '' higher order terms''. So the final result of your expansion is simply: U(0,dy)=U(0,0) + (Delta y)*(∂U/∂y )|_(0,dy).
      \m/
      Best Yael.

    • @raiden5736
      @raiden5736 2 ปีที่แล้ว

      @@jokerman9295 Just a final comment... Formally you should have this: U(0,dy)=U(0,0) + (Delta y)*(∂U/∂y )|_(0,dy) + (Delta x)*(∂U/∂x )|_(0,dy) + (higher order terms). How ever "Delta x" is just (x_A' - x_A')=(0-0)=0 so the term '' (Delta x)*(∂U/∂x )|_(0,dy) '' vanish, in addition you ignore '' higher order terms''. So the final result of your expansion is simply: U(0,dy)=U(0,0) + (Delta y)*(∂U/∂y )|_(0,dy).