Solving an integral equation using special functions.

แชร์
ฝัง
  • เผยแพร่เมื่อ 20 ธ.ค. 2024

ความคิดเห็น •

  • @xizar0rg
    @xizar0rg ปีที่แล้ว +82

    I love how, on one hand he glosses over the intricacies of trig substitution in integrals, but at the same time he carefully explains how we know that pi/4 is less than one.
    sidenote: For those in the future, the legendre duplication video was yesterday's: th-cam.com/video/BIR4jDur_Ik/w-d-xo.html

    • @anshumanagrawal346
      @anshumanagrawal346 ปีที่แล้ว +1

      I know right 😂

    • @landy4497
      @landy4497 ปีที่แล้ว +3

      I think that's because that's how he sees the beauty in math: by logical implications, rather than long equations

  • @thomashoffmann8857
    @thomashoffmann8857 ปีที่แล้ว +23

    10:30 in the definition of the beta function, the exponents should be v-1 and w-1. The second definition with sin and cos is fine though.

  • @Happy_Abe
    @Happy_Abe ปีที่แล้ว +4

    @5:10 while that inequality looks obvious, one has to be careful for x values between 0 and 1 where a higher exponent actually leads to a smaller number

  • @throwaway692
    @throwaway692 ปีที่แล้ว +14

    Dude... I just want to say this out loud. As a Physicist(and teacher myself) I cannot say how happy I am to have found your video series. As you might expect I'm more of a PDE kinda guy than a Number Theory kinda guy. But you help keep me sharp. Much obliged.

  • @maths_505
    @maths_505 ปีที่แล้ว +7

    The general case of the integral parametrized by alpha is pretty cool too

  • @thomashoffmann8857
    @thomashoffmann8857 ปีที่แล้ว +4

    5:30 the obvious inequality is not clear to me 🤔
    If x < 1, i can't see the inequality at first glance because 1+x^a gets smaller.
    E. G. For a = 3 and x = 0.1, the left integrand is bigger.

    • @xizar0rg
      @xizar0rg ปีที่แล้ว +3

      You've explained it pretty well, despite saying that you don't understand it. Keep in mind he's not talking about the integrands, but the integrals. (The 'smaller' curve (larger values of alpha) has less area underneath it.)

    • @thomashoffmann8857
      @thomashoffmann8857 ปีที่แล้ว +4

      ​@@xizar0rgyes, so it looks like the integral from 0 to 1 behaves different than the integral from 1 to infinity.
      How the sum of both parts behave 🤷‍♂️

    • @wesleydeng71
      @wesleydeng71 ปีที่แล้ว +2

      ​@@thomashoffmann8857Right. One needs to prove that (1, infinity) overweighs (0,1) which is a homework @14:55 😂

  • @jcantonelli1
    @jcantonelli1 ปีที่แล้ว +2

    Somehow, once he said that 1 < a < 2, I suspected that phi would be a solution. Nice problem.

  • @erosravera3721
    @erosravera3721 ปีที่แล้ว +6

    Wow! It starts as "plain" calculus, then it take a long steep route through the Gamma function, and finally an elementary quadratic formula, that yields the Golden Ratio!

  • @williammartin4416
    @williammartin4416 7 หลายเดือนก่อน

    Thanks!

  • @goodplacetostop2973
    @goodplacetostop2973 ปีที่แล้ว +9

    15:30

  • @karn87863
    @karn87863 ปีที่แล้ว +2

    Shouldn't the inequality at the end be flipped?

  • @MothRay
    @MothRay ปีที่แล้ว +8

    As soon as he said it’s between 1 and 2, I said I bet it’s going to be phi. And it was phi. Glorious!

  • @adfriedman
    @adfriedman ปีที่แล้ว

    Great video! For those of us lucky enough to guess the u-substitution u = 1/(1+x^a) with differential dx = -1/a u^(-1/a-1) (1-u)^(1/a-1) du, this gives the normally recognizable form of the Beta function directly without the trig substitutions. I got stuck on this problem trying to find a satisfying x for the equation with the Gammas.

  • @ThAlEdison
    @ThAlEdison ปีที่แล้ว +1

    I'm pretty sure that evaluates to (1/a)Gamma(1/a)Gamma(a-1/a)/Gamma(a)
    for a=phi, phi-1/phi=1, 1+1/phi=phi, tGamma(t)=Gamma(1+t),
    (1/phi)Gamma(1/phi)Gamma(phi-1/phi)/Gamma(phi)=Gamma(1+1/phi)Gamma(1)/Gamma(phi)=Gamma(phi)/Gamma(phi)=1
    This is based on making a u-substitution x^a=u, which gets it to the form (1/a)Int_0^Inf(u^(1/a-1)du/(1+u)^a), which is (1/a)Beta(1/a, a-1/a). One Euler's reflection formula later, and we're at the point where I started.

  • @aadfg0
    @aadfg0 ปีที่แล้ว +3

    Fun fact, phi is the only value in (1,2) for which antiderivative has a nice form.

  • @wolfmanjacksaid
    @wolfmanjacksaid ปีที่แล้ว +2

    It's been scientifically proven that watching Michael Penn videos every day makes you more smarter.

  • @cicik57
    @cicik57 ปีที่แล้ว +1

    ohh there is another video in internet of similar or exact same task where also it a power of golden ratio, using that a² = a+1, etc...

  • @redhotdogs3193
    @redhotdogs3193 ปีที่แล้ว +3

    Beta func def need z-1 and w-1?

  • @Jack_Callcott_AU
    @Jack_Callcott_AU ปีที่แล้ว +1

    Gee..that was fun❕ The general formula for the integral could come in handy too.

  • @yeahyeah54
    @yeahyeah54 ปีที่แล้ว +2

    awesome result

  • @JianJiaHe
    @JianJiaHe ปีที่แล้ว +1

    I have never used calculus for years, but I found watching a math problem being solved satisfying.

  • @PawelS_77
    @PawelS_77 ปีที่แล้ว +49

    What if I press the like button non-gently?

    • @damyankorena
      @damyankorena ปีที่แล้ว +6

      Then a small black hole will appear in your basement and pull you towards it for your entire life
      Just kidding just dont break your device you know

    • @birdbeakbeardneck3617
      @birdbeakbeardneck3617 ปีที่แล้ว +1

      Daddy

    • @binaryblade2
      @binaryblade2 ปีที่แล้ว +2

      I won't kink shame

    • @mariochavez3834
      @mariochavez3834 ปีที่แล้ว +1

      Asking the real questions

    • @shruggzdastr8-facedclown
      @shruggzdastr8-facedclown ปีที่แล้ว

      "Hulk SMASH!!!"

  • @Happy_Abe
    @Happy_Abe ปีที่แล้ว +2

    The inequality in the HW should be the other way

  • @sgogacz
    @sgogacz ปีที่แล้ว +2

    7:20 i can’t get why the upper integration bound after theta substitution is pi/2. It was obvious in case of substitution x=tan(theta) but in this case we’re doing substitution x=tan(theta)^(2/alpha) so shouldn’t the upper bound be like (pi/2)^(2/alpha) ?

    • @fundopreto9823
      @fundopreto9823 ปีที่แล้ว +3

      The thing is, tan(pi/2)^(2/alpha) continues to be infinity, since (infinity)^(2/alpha) = infinity. So you should consider the angle that is inside the tan(theta)^(2/alpha) which is, in this case, only pi/2, if that makes sense.

  • @Alan-zf2tt
    @Alan-zf2tt ปีที่แล้ว

    That was beautiful! Compliments to approaching the problem tying it in with gammas and betas and bringing it down to earth with some simple quadratics. And all in < 17 minutes

  • @DmitriStarostin
    @DmitriStarostin ปีที่แล้ว

    You get alpha to be 1.618. The limit of the divisor would then be x power 2.61, and integrated x power 1.61. This is about 1 divide by x power 3/2 (three halves). It is Kepler's law! The square root of time power 3 is an axis of an ellipse. So we get 1 / axis of an ellipse. This may be the eccentricity or the 1 / eccentricity if it has a limit. In other words, if it has a limit, it is an elliptical (and not hyperbolic orbit). It is not exactly 3/2 because 1. the Moon is moving away from the Earth and the planets are moving away from the Sun 2. the universe is expanding 3. one does not count in the Earth's motion against the fixed stars.

  • @masonholcombe3327
    @masonholcombe3327 ปีที่แล้ว

    love how a intimidating looking integral and quotients of beta and gamma functions boiled down to a simple quadratic equation

  • @SuperSilver316
    @SuperSilver316 ปีที่แล้ว +1

    As soon as I saw that set up I had a feeling the golden ratio was coming

    • @jcantonelli1
      @jcantonelli1 ปีที่แล้ว

      Haha, same - something about the repeated powers of alpha.

  • @SHASHANKRUSTAGII
    @SHASHANKRUSTAGII ปีที่แล้ว +11

    golden ratio

    • @Rócherz
      @Rócherz ปีที่แล้ว +3

      *“It’s wabbit season!”*

  • @digxx
    @digxx ปีที่แล้ว +8

    I think the HW should be clearly reversed, since for alpha->1 the integral diverges and must be greater than for any beta>alpha.

    • @digxx
      @digxx ปีที่แล้ว +1

      Upon checking numerically, the inequality appears rather spurious to me, since the integral has a unique minimum on (1,infinity) after which it approaches 1 from below as alpha->infinity.

  • @CherylWong-y4b
    @CherylWong-y4b ปีที่แล้ว +1

    Hi Michael, thank you for the video. Appreciate if due credit be given to the author of the math problem.

  • @saidfalah4180
    @saidfalah4180 ปีที่แล้ว

    To golden calculus, golden number!
    Thank you very much

  • @yeech
    @yeech ปีที่แล้ว +1

    why 1/alpha + 1 = alpha?

    • @threenaj293
      @threenaj293 ปีที่แล้ว +5

      he didnt say that it's a necessary condition, just that if it were to be true then alpha would solve the problem.

    • @xizar0rg
      @xizar0rg ปีที่แล้ว +2

      A lot of math problems have "clever" solutions that make things work. That's what he's talking about when he mentions "wishful thinking". (This is similar to when Blackpenredpen uses "wouldn't it be nice".)
      He chooses a solution that works (golden ratio) as a "clever guess", and then leaves it as a homework problem to show there are no other solutions (while sketching out an explanation).

    • @yeech
      @yeech ปีที่แล้ว

      Oh I see

    • @alexandermorozov2248
      @alexandermorozov2248 ปีที่แล้ว

      I had the same question 😜

  • @allenminch2253
    @allenminch2253 ปีที่แล้ว +1

    What a yet additional beautiful manifestation of the golden ratio!

  • @siddharthchauhan1129
    @siddharthchauhan1129 ปีที่แล้ว +1

    Is it just me or the integral boils down to b(1/a, a-1/a)/a instead of twice that

  • @Kapomafioso
    @Kapomafioso ปีที่แล้ว

    This is exactly what maths 505 did.

  • @anestismoutafidis529
    @anestismoutafidis529 ปีที่แล้ว +1

    α = +log(10² )

  • @birdbeakbeardneck3617
    @birdbeakbeardneck3617 ปีที่แล้ว

    Thoose who know

  • @Maths_3.1415
    @Maths_3.1415 ปีที่แล้ว +1

    Take a look at problem 5 of IMO 2022
    And Problem 1 of IMO 2023
    Both are number theory problems :)

  • @enpeacemusic192
    @enpeacemusic192 ปีที่แล้ว

    Of course its the golden ratio. Why wouldn’t it be the golden ratio. Why would it make sense for it to be anything but the golden ratio? Lmao