what a nice integral!

แชร์
ฝัง
  • เผยแพร่เมื่อ 30 ม.ค. 2025

ความคิดเห็น • 55

  • @Cloud88Skywalker
    @Cloud88Skywalker หลายเดือนก่อน +67

    Help, please. I couldn't find a good place to stop and now I'm lost.

    • @kumoyuki
      @kumoyuki หลายเดือนก่อน +2

      I feel so LOST

    • @PRIYANSH_SUTHAR
      @PRIYANSH_SUTHAR หลายเดือนก่อน +1

      Law of inertia bro. Call Newton to apply force

  • @goodplacetostop2973
    @goodplacetostop2973 หลายเดือนก่อน +76

    0:04 Bless you
    0:07 Actual start

    • @mtaur4113
      @mtaur4113 หลายเดือนก่อน +15

      4 seconds of hard work, not gonna throw that away, we have come too far.

  • @diegoman8158
    @diegoman8158 หลายเดือนก่อน +4

    Without watching the video:
    Let I(a) = int from 0 to 1 of sin(aln(x))/ln(x)
    With Feynman's trick, and expressing cosine as a complex exponential, we easily obtain I'(a)=1/(1+a²).
    With I(0)=0, which is easy to note from I(a)'s definition, we get I(a) = arctan(a). The target case with a=1 gives I(1) = π/4 as the answer

  • @dalek1099
    @dalek1099 หลายเดือนก่อน +5

    I did it by writing sin(alnx)/lnx with feynman's trick the derivative becomes cos(alnx)=Re(e^(ialnx))=Re(x^(ia)). Then integrate, to get Re(1/(1+ia))=Re((1-ia)/(a^2+1)=1/(a^2+1). Integrate to give arctana+C. Setting a=0 gives the integral=0 because sin0=0. Therefore, we get arctana and setting a=1 we get arctan1=pi/4.

  • @jay_13875
    @jay_13875 หลายเดือนก่อน +13

    If we introduce I(b) = int_{-infty}^0 e^y/y * sin(b*y) dy, we get dI(b)/db = int_{-infty}^0 e^y * cos(b*y) dy, which evaluates straightforwardly to 1/(1+b^2).
    (basically the Laplace transform of cos(b*t) evaluated at s=1 after substituting t=-y)
    Therefore I(b) = arctan(b) + C. And since I(0) = arctan(0) = 0, we have C = 0, giving us I(1) = arctan(1) = pi/4.

    • @richardheiville937
      @richardheiville937 หลายเดือนก่อน

      No need Laplace transform, y->exp(y) cos(by) has a simple antiderivative computed by two integration by parts. d(sin(by)/b)= cos(by) and then d(-cos(by)/b^2)=sin(by)/b

  • @rotoboravtov4354
    @rotoboravtov4354 หลายเดือนก่อน +7

    4:15 After getting the dz integral we can use exponential formula for sin and immideately get the last integral using the fact \int_0^inf e^(az)=1/a

  • @mathematics_and_energetics
    @mathematics_and_energetics หลายเดือนก่อน +1

    We could calculate in C with sin(z) = (e^iz - e^(-iz) / 2i and get 1/2i*[Ei((1+i)lnx) - Ei((1-i)lnx)] and look at the difference of the power series of the Ei-functions, leaving us with:
    (-i/2*ln((1+i)/(1-i)) which is arctan(1) = pi/4

  • @maurobraunstein9497
    @maurobraunstein9497 หลายเดือนก่อน +2

    Clever! I did this integral less cleverly but I still got the answer, which doesn't usually happen with these integral videos. I also did the substitution, which gives the integral of sin(y)e^(y)/y dy from -∞ to 0, but then I got a bit stuck (because I never think of differentiating under the integral sign) so I just... turned sin(y)/y into an infinite series, the sum from n = 0 to ∞ of (-1)^n · y^(2n)/(2n + 1)!. Then it's just integration by parts. If f(n) = ∫y^(n)·e^y dy from -∞ to 0, you can easily see that f(0) = 1, and by applying integration by parts, you get that f(n) = -n·f(n - 1), so f(n) = (-1)^n · n!. This eventually gets you to the integral as 1 - 1/3 + 1/5 - 1/7 + ..., which is a series that converges to π/4 *famously* slowly. I feel like I got lucky that I remembered that series. Not sure I would have been able to get π/4 from that otherwise.

  • @AndyBaiduc-iloveu
    @AndyBaiduc-iloveu หลายเดือนก่อน +7

    Feymanns trick or contour integration seems good

  • @theartisticactuary
    @theartisticactuary หลายเดือนก่อน +3

    At 5:20 I'd have replaced sin(y) with imaginary part of exp(iy) and gone on from there.

  • @carlosmana3806
    @carlosmana3806 หลายเดือนก่อน

    Can integrate also f(z)=exp(-z)/z on a contour with
    1) arc of radius epsilon centred at 0
    2) arc of radius R centred at 0
    3) line from R*exp(i pi/4) to epsilon*exp(i pi/4)
    4) line from epsilon*exp(-i pi/4) to R*exp(-i pi/4)

  • @SuperSilver316
    @SuperSilver316 หลายเดือนก่อน +18

    Feynman’s trick or something

    • @TheEternalVortex42
      @TheEternalVortex42 หลายเดือนก่อน +6

      Feynman's trick is pretty much the same thing as what Michael did.

    • @halbarad7932
      @halbarad7932 23 วันที่ผ่านมา

      That's what I did

  • @kehrierg
    @kehrierg หลายเดือนก่อน +1

    Oof, that splitting up into 2 terms trick came out of nowhere. Idk how I ever would have thought to do that.

    •  หลายเดือนก่อน

      It seems to have been crafted from wanting to cancel 1/z and z, after noticing they both appear in the integration by parts

  • @joshuaiosevich3727
    @joshuaiosevich3727 หลายเดือนก่อน

    For integral lovers this one’s a little formulaic, forced u sub u=ln(x) makes the integral become a quantity that comes up when you apply Feynmans trick to sin(x)/x, so you take what you know there and just rinse and repeat.

  • @demenion3521
    @demenion3521 หลายเดือนก่อน +6

    i think writing sin(y) in exponential form gives the same result a bit quicker.

    • @M.Z.M.N.
      @M.Z.M.N. หลายเดือนก่อน

      How??

    • @demenion3521
      @demenion3521 หลายเดือนก่อน

      @M.Z.M.N. sin(y)=(exp(iy)-exp(-iy))/(2i). and then you apply the same differentiation trick as in the video, but you only need to integrate a simple exponential function

  • @BikeArea
    @BikeArea หลายเดือนก่อน +5

    0:04 You should do more backflips again to relax your muscles. 😮
    😏

  • @xminty77
    @xminty77 หลายเดือนก่อน

    bless ya

  • @CamiKite
    @CamiKite หลายเดือนก่อน

    It's simpler if you parametrize I(z)=integral sin(y)exp(-zy)/y and then express I'(z) which you can find easily by expressing sin(y) in exponential terms so that I'(z)=1/(1+z^2). Then you find the integration constant by making z->infinity and it's already done !

    • @richardheiville937
      @richardheiville937 หลายเดือนก่อน

      But you need to use complex numbers.

    • @CamiKite
      @CamiKite หลายเดือนก่อน

      @@richardheiville937 Yes but often using complex numbers is less complex 😉

  • @tm8539
    @tm8539 หลายเดือนก่อน

    I don't understand, it's a beautiful feeling, I wanna understand so much!

  • @holyshit922
    @holyshit922 หลายเดือนก่อน +1

    t = -ln(x)
    L(f(t)/t) where f(t) = sin(t)
    then plug in s = 1

  • @robblerouser5657
    @robblerouser5657 หลายเดือนก่อน +1

    What did you do in the third step when you introduced "z" into the integral?

  • @barryzeeberg3672
    @barryzeeberg3672 หลายเดือนก่อน

    Need a good place to start :)

  • @Blingsss
    @Blingsss หลายเดือนก่อน

    This integral was definitely an interesting challenge. I love how different approaches can lead to the same result. I’ve been using SolutionInn's AI tools to help me with tricky integrals like this, and it’s been a huge help to get through the steps when I get stuck or need a fresh perspective. This series approach is a clever twist, and it’s great to see how it all links back to something as iconic as π/4!

  • @sqigger
    @sqigger หลายเดือนก่อน +2

    Another way to do it:
    sin(log(x)) = (x^i - x^(-i))/2i
    I(p) = int from 0 to 1 (x^(p*i) - x^(-i))/log(x) dx
    And there you go.

    • @solcarzemog5232
      @solcarzemog5232 หลายเดือนก่อน

      Why this? Can you elaborate?

    • @rotoboravtov4354
      @rotoboravtov4354 หลายเดือนก่อน +2

      @@solcarzemog5232 sin(x) = (e^(ix) - e^(-ix))/(2i). This is a bit loose but correct application of complex analysis.

    • @sqigger
      @sqigger หลายเดือนก่อน

      @@rotoboravtov4354 yea, my bad 😅

    • @M.Z.M.N.
      @M.Z.M.N. หลายเดือนก่อน

      So here's the thing you still need feymmans technique, or you need to turn that into a tripe integral to solve it
      It makes no difference

  • @BbNn9952
    @BbNn9952 หลายเดือนก่อน

    Breathing chalk dust too many years!!!

  • @mr.soundguy968
    @mr.soundguy968 หลายเดือนก่อน +1

    And that's a good place to stop

  • @phatguardian
    @phatguardian หลายเดือนก่อน +6

    Why didn’t he just restart filming 😂

  • @gghelis
    @gghelis หลายเดือนก่อน

    B-b-but where's the good place to stop?

  • @mtaur4113
    @mtaur4113 หลายเดือนก่อน

    Looks like sin(u)e^u/u du to me. That u denominator looks rough though. Maybe there is a definite-integrals-only trick too. 🤔

  • @stevenpurtee5062
    @stevenpurtee5062 หลายเดือนก่อน +1

    Why do you always skip over the details of if/how to change the order of integration. That's an interesting and important step. You have at least said "by Fubini's Theorem" before, but it think it would be important and interesting to go through the steps.

  • @dominiquecolin4716
    @dominiquecolin4716 หลายเดือนก่อน

    not an easy one; many non obvious stuff to imagine here...

  • @EliavShalev
    @EliavShalev หลายเดือนก่อน +6

    Lol you way overcomplicated it. Could have easily solved it using the properties of the laplace transform.

    • @AndyBaiduc-iloveu
      @AndyBaiduc-iloveu หลายเดือนก่อน

      Can you teach me how to do that? I only have learned a little about it when we use it to solve differential equations

    • @EliavShalev
      @EliavShalev หลายเดือนก่อน +3

      @ sure! First you do the substitution that he did and convert the integral to that of -(sin(x)/x)e^(-x) from 0 to inf this is the laplace transform of sinx/x and from the properties of the laplace transform we know that L(f(t)/t) = L(f(t)) integrated from s to inf thus the result is the integral of 1/(x^2+1) from s to inf with s=1

    • @AndyBaiduc-iloveu
      @AndyBaiduc-iloveu หลายเดือนก่อน

      Ok , I kinda get it ! Thanks!

    • @robertveith6383
      @robertveith6383 หลายเดือนก่อน

      ​@EliavShalev -- Write sin(x)/x.

  • @karlyohe6379
    @karlyohe6379 หลายเดือนก่อน

    Okay. That was like a f*cking magic trick :D

    • @robertveith6383
      @robertveith6383 หลายเดือนก่อน

      Get rid of that major curse word. It's ignorant and needless.

    • @karlyohe6379
      @karlyohe6379 หลายเดือนก่อน +1

      @@robertveith6383 no