Real Analysis 32 | Intermediate Value Theorem [dark version]

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025

ความคิดเห็น • 10

  • @maths_side
    @maths_side ปีที่แล้ว +3

    i totally support your efforts and hard work ,

  • @212ntruesdale
    @212ntruesdale 2 วันที่ผ่านมา

    For me, the proof only works, or works most clearly, if f is monotonic. Otherwise, I see the a an b sequences getting stuck: a can’t move towards b when f(c) is +, and b can’t move towards a when f(c) is -.
    But it’s not a problem overall, because interval I can be the result of the process applied to sub intervals.

    • @brightsideofmaths
      @brightsideofmaths  2 วันที่ผ่านมา

      But c is always the middle point. So we will always move :)

    • @212ntruesdale
      @212ntruesdale 2 วันที่ผ่านมา

      @@brightsideofmaths Didn’t know that. I thought c was just an arbitrary x. BTW, my son is majoring in Math at the University of Michigan in Ann Arbor.
      I am studying your course because I like puzzles, and Real Analysis has a reputation for being challenging.
      I am now up to video 32, having watched most multiple times. I absolutely love the rigor. And the approaches are so clever, a glimpse of genius often.

    • @brightsideofmaths
      @brightsideofmaths  2 วันที่ผ่านมา

      Really nice! Thanks :)

    • @212ntruesdale
      @212ntruesdale 2 วันที่ผ่านมา

      @@brightsideofmaths ​I’m not sure why the definition of continuity doesn’t prove intermediate values.
      P.S. I have an amazing proof of Euler’s Basel Problem I’d like to share, the most naturally/easiest (heuristic ) I’ve ever seen; others feel contrived to me.
      How can I show it to you?

    • @brightsideofmaths
      @brightsideofmaths  2 วันที่ผ่านมา

      @@212ntruesdale I am not an expert there. So maybe someone else :)

  • @maths_side
    @maths_side ปีที่แล้ว +1

    very good explanation , but i already know this very well